This repository contains scripts to process two datasets, feature preparation code and implementation of algorithms from publication "Tracking Buggy Files: New Efficient Adaptive Bug Localization Algorithm". Main directory contains python code to prepare features and conduct experiments. The java-ast-extractor directory contains 4 programs enriching source code files with ast trees, utilized during feature construction. The ast trees are stored as git notes per each source file. The java 8 and apache maven are required to compile java-ast-extractor. Rest of scripts require python 3 and python 2.
Paper https://doi.org/10.1109/TSE.2021.3064447
@ARTICLE{9372820,
author={Fejzer, Mikołaj and Narębski, Jakub and Przymus, Piotr and Stencel, Krzysztof},
journal={IEEE Transactions on Software Engineering},
title={Tracking Buggy Files: New Efficient Adaptive Bug Localization Algorithm},
year={2022},
volume={48},
number={7},
pages={2557-2569},
doi={10.1109/TSE.2021.3064447}
}
git fetch origin refs/notes/commits:refs/notes/commits
git fetch origin refs/notes/tokenized_counters:refs/notes/tokenized_counters
git fetch origin refs/notes/graph:refs/notes/graph
./process_bug_reports.py AspectJ.xml ../tracking_buggy_files_aspectj_dataset/ aspectj_base.json
./fix_and_augment.py aspectj_base.json ../tracking_buggy_files_aspectj_dataset/ > aspectj_aug.json
./pick_bug_freq.py aspectj_aug.json ../tracking_buggy_files_aspectj_dataset/ > aspectj.json
./add_missing_description_as_separate_reports.py aspectj_base.json aspectj_base_with_descriptions.json BUGZILLA_API_KEY BUGZILLA_API_URL
./create_ast_cache.py ../tracking_buggy_files_aspectj_dataset/ aspectj.json aspectj
./vectorize_ast.py aspectj.json aspectj
./vectorize_enriched_api.py aspectj.json aspectj
./convert_tf_idf.py aspectj.json aspectj
./calculate_feature_3.py aspectj.json aspectj
./retrieve_features_5_6.py aspectj.json aspectj
./calculate_notes_graph_features.py aspectj.json aspectj ../tracking_buggy_files_aspectj_dataset/
./calculate_vectorized_features.py aspectj.json aspectj
./save_normalized_fold_dataframes.py aspectj.json aspectj
Example for AspectJ project, using same data prefix as feature calculation
./load_data_to_joblib_memmap.py aspectj
./train_adaptive.py aspectj
Example using data prefix eclipse_311 and eclipse 311 sources in "sources" dir. Requires compiled java-ast-extractor. Eclipse 311 sources (eclipse-sourceBuild-srcIncluded-3.1.zip) can be downloaded from http://archive.eclipse.org/eclipse/downloads/drops/R-3.1-200506271435/
./process_buglocator.py EclipseBugRepository.xml EclipseBugRepository.json
java -jar java-ast-extractor-source-snapshot.jar sources extract.txt
./tokenize_buglocator_source.py extract.txt tokenized_extract.txt
./vectorize_buglocator_source.py EclipseBugRepository.json tokenized_extract.txt eclipse_311
./vectorize_buglocator_enriched_api.py extract.txt eclipse_311
./calculate_buglocator_time_features.py EclipseBugRepository.json eclipse_311
./calculate_buglocator_feature_3.py EclipseBugRepository.json eclipse_311
./calculate_buglocator_graph_features.py extract.txt eclipse_311
./calculate_buglocator_features.py EclipseBugRepository.json eclipse_311
./save_normalized_fold_dataframes_buglocator.py EclipseBugRepository.json eclipse_311
After downloading each archive compute normalization and load data, using matching project file pattern - example for AspectJ:
./save_normalized_fold_dataframes.py aspectj.json aspectj
./load_data_to_joblib_memmap.py aspectj