mouimet-infinisoft / ibrain-cli

0 stars 0 forks source link

Contextual Awareness #2

Open mouimet-infinisoft opened 4 months ago

mouimet-infinisoft commented 4 months ago

2. Vectorize Codebase into pg_vector for Contextual Awareness

Objective: To enhance the AI's understanding of your codebase by storing vector representations of the code, allowing for more context-aware suggestions and collaborations.

Approach:

Implementation Steps:

  1. Set Up pg_vector: Ensure pg_vector is enabled on your Supabase instance.

    CREATE EXTENSION IF NOT EXISTS vector;
  2. Create a Table for Vectors: Create a table to store the code vectors.

    CREATE TABLE code_vectors (
       id SERIAL PRIMARY KEY,
       file_path TEXT,
       code_snippet TEXT,
       vector vector(1536) -- Adjust the dimension based on the vector size from your model
    );
  3. Vectorize Code Snippets: Use a model to generate vectors for your code snippets.

    from transformers import AutoTokenizer, AutoModel
    import torch
    
    tokenizer = AutoTokenizer.from_pretrained("your-code-model")
    model = AutoModel.from_pretrained("your-code-model")
    
    def vectorize_code(code):
       inputs = tokenizer(code, return_tensors='pt')
       outputs = model(**inputs)
       return outputs.last_hidden_state.mean(dim=1).detach().numpy()
  4. Store Vectors in Database: Insert the vectors into the database.

    const { data, error } = await supabase
       .from('code_vectors')
       .insert([
           { file_path: 'path/to/file', code_snippet: codeSnippet, vector: vectorRepresentation }
       ]);
  5. Search Using Vectors: Implement a search functionality using pg_vector for similarity queries.

    SELECT * FROM code_vectors
    ORDER BY vector <-> '[your_vector_representation]'
    LIMIT 5;