i running this code in which x train not defined def _train_random_forest(X_train, y_train, X_test, y_test): """ Function that uses random forest classifier to train the model :return: """ # Create a new random forest classifier rf = RandomForestClassifier() # Dictionary of all values we want to test for n_estimators params_rf = {'n_estimators': [110,130,140,150,160,180,200]} # Use gridsearch to test all values for n_estimators rf_gs = GridSearchCV(rf, params_rf, cv=5) # Fit model to training data rf_gs.fit(X_train, y_train) # Save best model rf_best = rf_gs.best_estimator_ # Check best n_estimators value print(rf_gs.best_params_) prediction = rf_best.predict(X_test) print(classification_report(y_test, prediction)) print(confusion_matrix(y_test, prediction)) return rf_best rf_model = _train_random_forest(X_train, y_train, X_test, y_test)
"""
Function that uses random forest classifier to train the model
:return:
"""
# Create a new random forest classifier
rf = RandomForestClassifier()
# Dictionary of all values we want to test for n_estimators
params_rf = {'n_estimators': [110,130,140,150,160,180,200]}
# Use gridsearch to test all values for n_estimators
rf_gs = GridSearchCV(rf, params_rf, cv=5)
# Fit model to training data
rf_gs.fit(X_train, y_train)
# Save best model
rf_best = rf_gs.best_estimator_
# Check best n_estimators value
print(rf_gs.best_params_)
prediction = rf_best.predict(X_test)
print(classification_report(y_test, prediction))
print(confusion_matrix(y_test, prediction))
return rf_best
def _train_random_forest(X_train, y_train, X_test, y_test):
rf_model = _train_random_forest(X_train, y_train, X_test, y_test)