Toolkit for the estimation of hierarchical Bayesian vector autoregressions. Implements hierarchical prior selection for conjugate priors in the fashion of Giannone, Lenza & Primiceri (2015). Allows for the computation of impulse responses and forecasts and provides functionality for assessing results.
VARs are multivariate, so you have eight lags for each of the variables (epu and ine). If you just want the coefficients of epu you can just subset the result.
hello, nk027:
my question is numeric array of summary(x) is (dimensions 17, 2), why not (dimensions 9, 2) ??? the result should be: epu ine constant 0.644 -0.064 epu-lag1 -0.589 0.000 epu-lag2 -0.406 0.000 epu-lag3 -0.290 0.002 epu-lag4 -0.141 -0.002 epu-lag5 -0.105 0.000 epu-lag6 -0.083 -0.001 epu-lag7 -0.087 -0.002 epu-lag8 0.001 -0.001
data and code is below:
x <- bvar(p_ine , lags = 8, n_draw = 20000L, n_burn = 5000L, verbose = FALSE)
Numeric array (dimensions 17, 2) of coefficient values from a BVAR. Median values: epu ine constant 0.644 -0.064 epu-lag1 -0.589 0.000 ine-lag1 -0.354 0.119 epu-lag2 -0.406 0.000 ine-lag2 -0.937 0.042 epu-lag3 -0.290 0.002 ine-lag3 -0.277 0.042 epu-lag4 -0.141 -0.002 ine-lag4 -0.406 0.011 epu-lag5 -0.105 0.000 ine-lag5 -0.028 -0.016 epu-lag6 -0.083 -0.001 ine-lag6 -0.245 0.022 epu-lag7 -0.087 -0.002 ine-lag7 -0.176 -0.025 epu-lag8 0.001 -0.001 ine-lag8 -0.269 -0.013