Open mbcse opened 5 years ago
from keras.preprocessing.image import img_to_array import imutils import cv2 from keras.models import load_model import numpy as np import time # parameters for loading data and images detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml' emotion_model_path = 'models/_mini_XCEPTION.102-0.66.hdf5' # hyper-parameters for bounding boxes shape # loading models face_detection = cv2.CascadeClassifier(detection_model_path) emotion_classifier = load_model(emotion_model_path, compile=False) EMOTIONS = ["angry" ,"disgust","scared", "happy", "sad", "surprised", "neutral"] dict_idk = {"angry": 0, "disgust": 0, "scared": 0, "happy": 0, "sad": 0, "surprised": 0, "neutral": 0} li = [] #feelings_faces = [] #for index, emotion in enumerate(EMOTIONS): # feelings_faces.append(cv2.imread('emojis/' + emotion + '.png', -1)) # starting video streaming cv2.namedWindow('your_face') camera = cv2.VideoCapture(0) start_time=time.time() count=0 while True: preds=1 frame = camera.read()[1] #reading the frame frame = imutils.resize(frame,width=300) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_detection.detectMultiScale(gray,scaleFactor=1.1,minNeighbors=5,minSize=(30,30),flags=cv2.CASCADE_SCALE_IMAGE) canvas = np.zeros((250, 300, 3), dtype="uint8") frameClone = frame.copy() if len(faces) > 0: faces = sorted(faces, reverse=True, key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0] (fX, fY, fW, fH) = faces # Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare # the ROI for classification via the CNN roi = gray[fY:fY + fH, fX:fX + fW] roi = cv2.resize(roi, (64, 64)) roi = roi.astype("float") / 255.0 roi = img_to_array(roi) roi = np.expand_dims(roi, axis=0) preds = emotion_classifier.predict(roi)[0] emotion_probability = np.max(preds) label = EMOTIONS[preds.argmax()] for (i, (emotion, prob)) in enumerate(zip(EMOTIONS, preds)): # construct the label text text = "{}: {:.2f}%".format(emotion, prob * 100) li.append((emotion, prob)) # draw the label + probability bar on the canvas # emoji_face = feelings_faces[np.argmax(preds)] w = int(prob * 300) cv2.rectangle(canvas, (7, (i * 35) + 5), (w, (i * 35) + 35), (0, 0, 255), -1) cv2.putText(canvas, text, (10, (i * 35) + 23), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (255, 255, 255), 2) cv2.putText(frameClone, label, (fX, fY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2) cv2.rectangle(frameClone, (fX, fY), (fX + fW, fY + fH), (0, 0, 255), 2) # for c in range(0, 3): # frame[200:320, 10:130, c] = emoji_face[:, :, c] * \ # (emoji_face[:, :, 3] / 255.0) + frame[200:320, # 10:130, c] * (1.0 - emoji_face[:, :, 3] / 255.0) cv2.imshow('your_face', frameClone) cv2.imshow("Probabilities", canvas) count+=1 if (cv2.waitKey(1) or ((time.time()-start_time))>=6000000000000000000000000000000000000000): print("STOPING VIDEO ANALYSIS") break for i, j in li: dict_idk[i] += j camera.release() cv2.destroyAllWindows() return dict_idk
for (i, (emotion, prob)) in enumerate(zip(EMOTIONS, preds)): TypeError: zip argument #2 must support iteration
for (i, (emotion, prob)) in enumerate(zip(EMOTIONS, preds)): TypeError: zip argument #2 must support iteration