open-mmlab / mmdeploy

OpenMMLab Model Deployment Framework
https://mmdeploy.readthedocs.io/en/latest/
Apache License 2.0
2.78k stars 637 forks source link

[Bug] 在jeston nano上jetpack4.6.1无法正常运行TensorRT与onnxruntime的C++部署 #2630

Open HEIseYOUmolc opened 10 months ago

HEIseYOUmolc commented 10 months ago

Checklist

Describe the bug

模型转换由windows执行,将产生的onnx模型与engine模型文件迁移至jetson nano 模组中,部署过程中出现如下错误信息。仅在onnxruntime cpu 设置下可正常运行,cuda模式下均不可运行。

此外,可以使用trt在jetson nano 上转换onnx模型为engine格式,但我对engine了解较少,是否有其他部署方法?

Reproduction

在不同设置编译下的文件进行运行

trt编译 cmake .. -DMMDEPLOY_BUILD_SDK=ON -DMMDEPLOY_BUILD_SDK_PYTHON_API=ON -DMMDEPLOY_BUILD_EXAMPLES=ON -DMMDEPLOY_TARGET_DEVICES="cuda;cpu" -DMMDEPLOY_TARGET_BACKENDS="trt" -DMMDEPLOY_CODEBASES=all -Dpplcv_DIR=${PPLCV_DIR}/cuda-build/install/lib/cmake/ppl

ort编译 cmake .. -DMMDEPLOY_BUILD_SDK=ON -DMMDEPLOY_BUILD_SDK_PYTHON_API=ON -DMMDEPLOY_BUILD_EXAMPLES=ON -DMMDEPLOY_TARGET_DEVICES="cuda;cpu" -DMMDEPLOY_TARGET_BACKENDS="ort" -DMMDEPLOY_CODEBASES=all -Dpplcv_DIR=${PPLCV_DIR}/cuda-build/install/lib/cmake/ppl -DONNXRUNTIME_DIR=${ONNXRUNTIME_DIR}

运行命令

使用TensorRT ./object_detection cuda /home/nvidia/文档/mmdeploy_models/rtdetr-trt-sta-640/ /home/nvidia/图片/resources/test.jpg 使用ONNXRUNTIME ./object_detection cuda /home/nvidia/文档/mmdeploy_models/rtdetr-ort-dyn/ /home/nvidia/图片/resources/test.jpg

Environment

01/08 17:35:54 - mmengine - INFO - 

01/08 17:35:54 - mmengine - INFO - **********Environmental information**********
01/08 17:35:56 - mmengine - INFO - sys.platform: linux
01/08 17:35:56 - mmengine - INFO - Python: 3.6.15 | packaged by conda-forge | (default, Dec  3 2021, 19:12:04) [GCC 9.4.0]
01/08 17:35:56 - mmengine - INFO - CUDA available: True
01/08 17:35:56 - mmengine - INFO - GPU 0: NVIDIA Tegra X1
01/08 17:35:56 - mmengine - INFO - CUDA_HOME: /usr/local/cuda
01/08 17:35:56 - mmengine - INFO - NVCC: Cuda compilation tools, release 10.2, V10.2.300
01/08 17:35:56 - mmengine - INFO - GCC: gcc (Ubuntu/Linaro 7.5.0-3ubuntu1~18.04) 7.5.0
01/08 17:35:56 - mmengine - INFO - PyTorch: 1.10.0
01/08 17:35:56 - mmengine - INFO - PyTorch compiling details: PyTorch built with:
  - GCC 7.5
  - C++ Version: 201402
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - LAPACK is enabled (usually provided by MKL)
  - NNPACK is enabled
  - CPU capability usage: NO AVX
  - CUDA Runtime 10.2
  - NVCC architecture flags: -gencode;arch=compute_53,code=sm_53;-gencode;arch=compute_62,code=sm_62;-gencode;arch=compute_72,code=sm_72
  - CuDNN 8.2.1
    - Built with CuDNN 8.0
  - Build settings: BLAS_INFO=open, BUILD_TYPE=Release, CUDA_VERSION=10.2, CUDNN_VERSION=8.0.0, CXX_COMPILER=/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -DMISSING_ARM_VST1 -DMISSING_ARM_VLD1 -Wno-stringop-overflow, FORCE_FALLBACK_CUDA_MPI=1, LAPACK_INFO=open, TORCH_VERSION=1.10.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EIGEN_FOR_BLAS=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=OFF, USE_MKLDNN=OFF, USE_MPI=ON, USE_NCCL=0, USE_NNPACK=ON, USE_OPENMP=ON, 

01/08 17:35:56 - mmengine - INFO - TorchVision: 0.11.1
01/08 17:35:56 - mmengine - INFO - OpenCV: 4.6.0
01/08 17:35:56 - mmengine - INFO - MMCV: 1.7.1
01/08 17:35:56 - mmengine - INFO - MMCV Compiler: GCC 7.5
01/08 17:35:56 - mmengine - INFO - MMCV CUDA Compiler: 10.2
01/08 17:35:56 - mmengine - INFO - MMDeploy: 1.3.1+bc75c9d
01/08 17:35:56 - mmengine - INFO - 

01/08 17:35:56 - mmengine - INFO - **********Backend information**********
01/08 17:35:57 - mmengine - INFO - tensorrt:    8.2.1.8
01/08 17:35:57 - mmengine - INFO - tensorrt custom ops: Available
01/08 17:35:57 - mmengine - INFO - ONNXRuntime: None
01/08 17:35:57 - mmengine - INFO - ONNXRuntime-gpu: 1.10.0
01/08 17:35:57 - mmengine - INFO - ONNXRuntime custom ops:  Available
01/08 17:35:57 - mmengine - INFO - pplnn:   None
01/08 17:35:57 - mmengine - INFO - ncnn:    None
01/08 17:35:57 - mmengine - INFO - snpe:    None
01/08 17:35:57 - mmengine - INFO - openvino:    None
01/08 17:35:57 - mmengine - INFO - torchscript: 1.10.0
01/08 17:35:57 - mmengine - INFO - torchscript custom ops:  NotAvailable
01/08 17:35:57 - mmengine - INFO - rknn-toolkit:    None
01/08 17:35:57 - mmengine - INFO - rknn-toolkit2:   None
01/08 17:35:57 - mmengine - INFO - ascend:  None
01/08 17:35:57 - mmengine - INFO - coreml:  None
01/08 17:35:57 - mmengine - INFO - tvm: None
01/08 17:35:57 - mmengine - INFO - vacc:    None
01/08 17:35:57 - mmengine - INFO - 

01/08 17:35:57 - mmengine - INFO - **********Codebase information**********
01/08 17:35:57 - mmengine - INFO - mmdet:   None
01/08 17:35:57 - mmengine - INFO - mmseg:   None
01/08 17:35:57 - mmengine - INFO - mmpretrain:  None
01/08 17:35:57 - mmengine - INFO - mmocr:   None
01/08 17:35:57 - mmengine - INFO - mmagic:  None
01/08 17:35:57 - mmengine - INFO - mmdet3d: None
01/08 17:35:57 - mmengine - INFO - mmpose:  None
01/08 17:35:57 - mmengine - INFO - mmrotate:    None
01/08 17:35:57 - mmengine - INFO - mmaction:    None
01/08 17:35:57 - mmengine - INFO - mmrazor: None
01/08 17:35:57 - mmengine - INFO - mmyolo:  None

windows环境信息

01/08 17:52:08 - mmengine - INFO - **********Environmental information**********
E:\conda_env\RT-DETR\lib\site-packages\requests\__init__.py:102: RequestsDependencyWarning: urllib3 (1.26.16) or chardet (5.2.0)/charset_normalizer (None) doesn't match a supported version!
  warnings.warn("urllib3 ({}) or chardet ({})/charset_normalizer ({}) doesn't match a supported "
01/08 17:52:10 - mmengine - INFO - sys.platform: win32
01/08 17:52:10 - mmengine - INFO - Python: 3.9.17 (main, Jul  5 2023, 20:47:11) [MSC v.1916 64 bit (AMD64)]
01/08 17:52:10 - mmengine - INFO - CUDA available: True
01/08 17:52:10 - mmengine - INFO - numpy_random_seed: 2147483648
01/08 17:52:10 - mmengine - INFO - GPU 0: NVIDIA GeForce GTX 1060 6GB
01/08 17:52:10 - mmengine - INFO - CUDA_HOME: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3
01/08 17:52:10 - mmengine - INFO - NVCC: Cuda compilation tools, release 11.3, V11.3.58
01/08 17:52:10 - mmengine - INFO - MSVC: 用于 x64 的 Microsoft (R) C/C++ 优化编译器 19.36.32532 版
01/08 17:52:10 - mmengine - INFO - GCC: n/a
01/08 17:52:10 - mmengine - INFO - PyTorch: 1.12.1+cu113
01/08 17:52:10 - mmengine - INFO - PyTorch compiling details: PyTorch built with:
  - C++ Version: 199711
  - MSVC 192829337
  - Intel(R) Math Kernel Library Version 2020.0.2 Product Build 20200624 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
  - OpenMP 2019
  - LAPACK is enabled (usually provided by MKL)
  - CPU capability usage: AVX2
  - CUDA Runtime 11.3
  - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
  - CuDNN 8.3.2  (built against CUDA 11.5)
  - Magma 2.5.4
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.3.2, CXX_COMPILER=C:/actions-runner/_work/pytorch/pytorch/builder/windows/tmp_bin/sccache-cl.exe, CXX_FLAGS=/DWIN32 /D_WINDOWS /GR /EHsc /w /bigobj -DUSE_PTHREADPOOL -openmp:experimental -IC:/actions-runner/_work/pytorch/pytorch/builder/windows/mkl/include -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOCUPTI -DUSE_FBGEMM -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.12.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=OFF, USE_OPENMP=ON, USE_ROCM=OFF, 

01/08 17:52:10 - mmengine - INFO - TorchVision: 0.13.1+cu113
01/08 17:52:10 - mmengine - INFO - OpenCV: 4.8.0
01/08 17:52:10 - mmengine - INFO - MMEngine: 0.9.0
01/08 17:52:10 - mmengine - INFO - MMCV: 2.1.0
01/08 17:52:10 - mmengine - INFO - MMCV Compiler: MSVC 192930148
01/08 17:52:10 - mmengine - INFO - MMCV CUDA Compiler: 11.3
01/08 17:52:10 - mmengine - INFO - MMDeploy: 1.3.0+2882c64
01/08 17:52:10 - mmengine - INFO - 

01/08 17:52:10 - mmengine - INFO - **********Backend information**********
01/08 17:52:10 - mmengine - INFO - tensorrt:    8.2.1.8
01/08 17:52:10 - mmengine - INFO - tensorrt custom ops: Available
01/08 17:52:10 - mmengine - INFO - ONNXRuntime: None
01/08 17:52:10 - mmengine - INFO - ONNXRuntime-gpu: 1.10.0
01/08 17:52:10 - mmengine - INFO - ONNXRuntime custom ops:  Available
01/08 17:52:10 - mmengine - INFO - pplnn:   None
01/08 17:52:10 - mmengine - INFO - ncnn:    None
01/08 17:52:10 - mmengine - INFO - snpe:    None
01/08 17:52:10 - mmengine - INFO - openvino:    None
01/08 17:52:10 - mmengine - INFO - torchscript: 1.12.1+cu113
01/08 17:52:10 - mmengine - INFO - torchscript custom ops:  NotAvailable
01/08 17:52:10 - mmengine - INFO - rknn-toolkit:    None
01/08 17:52:10 - mmengine - INFO - rknn-toolkit2:   None
01/08 17:52:10 - mmengine - INFO - ascend:  None
01/08 17:52:10 - mmengine - INFO - coreml:  None
01/08 17:52:10 - mmengine - INFO - tvm: None
01/08 17:52:10 - mmengine - INFO - vacc:    None
01/08 17:52:10 - mmengine - INFO - 

01/08 17:52:10 - mmengine - INFO - **********Codebase information**********
01/08 17:52:10 - mmengine - INFO - mmdet:   3.2.0
01/08 17:52:10 - mmengine - INFO - mmseg:   None
01/08 17:52:10 - mmengine - INFO - mmpretrain:  None
01/08 17:52:10 - mmengine - INFO - mmocr:   None
01/08 17:52:10 - mmengine - INFO - mmagic:  None
01/08 17:52:10 - mmengine - INFO - mmdet3d: None
01/08 17:52:10 - mmengine - INFO - mmpose:  None
01/08 17:52:10 - mmengine - INFO - mmrotate:    None
01/08 17:52:10 - mmengine - INFO - mmaction:    None
01/08 17:52:10 - mmengine - INFO - mmrazor: None
01/08 17:52:10 - mmengine - INFO - mmyolo:  None

Error traceback

TensorRT错误信息

[2024-01-08 17:42:04.214] [mmdeploy] [info] [model.cpp:35] [DirectoryModel] Load model: "/home/nvidia/文档/mmdeploy_models/rtdetr-trt-sta-640/"
[2024-01-08 17:42:04.459] [mmdeploy] [error] [resize.cpp:84] unsupported interpolation method: bicubic
[2024-01-08 17:42:04.460] [mmdeploy] [error] [task.cpp:99] error parsing config: {
  "context": {
    "device": "<any>",
    "model": "<any>",
    "stream": "<any>"
  },
  "input": [
    "img"
  ],
  "module": "Transform",
  "name": "Preprocess",
  "output": [
    "prep_output"
  ],
  "transforms": [
    {
      "backend_args": null,
      "type": "LoadImageFromFile"
    },
    {
      "interpolation": "bicubic",
      "keep_ratio": false,
      "size": [
        640,
        640
      ],
      "type": "Resize"
    },
    {
      "mean": [
        0,
        0,
        0
      ],
      "std": [
        255,
        255,
        255
      ],
      "to_rgb": true,
      "type": "Normalize"
    },
    {
      "size_divisor": 32,
      "type": "Pad"
    },
    {
      "type": "DefaultFormatBundle"
    },
    {
      "keys": [
        "img"
      ],
      "meta_keys": [
        "pad_param",
        "ori_filename",
        "ori_shape",
        "filename",
        "flip",
        "valid_ratio",
        "img_id",
        "pad_shape",
        "img_path",
        "img_norm_cfg",
        "img_shape",
        "flip_direction",
        "scale_factor"
      ],
      "type": "Collect"
    }
  ],
  "type": "Task"
}
[2024-01-08 17:42:06.949] [mmdeploy] [error] [trt_net.cpp:28] TRTNet: 6: The engine plan file is not compatible with this version of TensorRT, expecting library version 8.2.1 got 8.2.3, please rebuild.
[2024-01-08 17:42:06.950] [mmdeploy] [error] [trt_net.cpp:28] TRTNet: 4: [runtime.cpp::deserializeCudaEngine::50] Error Code 4: Internal Error (Engine deserialization failed.)
[2024-01-08 17:42:06.950] [mmdeploy] [error] [trt_net.cpp:75] failed to deserialize TRT CUDA engine
[2024-01-08 17:42:06.981] [mmdeploy] [error] [net_module.cpp:54] Failed to create Net backend: tensorrt, config: {
  "context": {
    "device": "<any>",
    "model": "<any>",
    "stream": "<any>"
  },
  "input": [
    "prep_output"
  ],
  "input_map": {
    "img": "input"
  },
  "is_batched": false,
  "module": "Net",
  "name": "rtdetr",
  "output": [
    "infer_output"
  ],
  "output_map": {},
  "type": "Task"
}
[2024-01-08 17:42:06.982] [mmdeploy] [error] [task.cpp:99] error parsing config: {
  "context": {
    "device": "<any>",
    "model": "<any>",
    "stream": "<any>"
  },
  "input": [
    "prep_output"
  ],
  "input_map": {
    "img": "input"
  },
  "is_batched": false,
  "module": "Net",
  "name": "rtdetr",
  "output": [
    "infer_output"
  ],
  "output_map": {},
  "type": "Task"
}
Segmentation fault (core dumped)

ONNXRUNTIME 错误信息

[2024-01-08 17:46:37.772] [mmdeploy] [info] [model.cpp:35] [DirectoryModel] Load model: "/home/nvidia/文档/mmdeploy_models/rtdetr-ort-dyn/"
[2024-01-08 17:46:38.355] [mmdeploy] [error] [resize.cpp:84] unsupported interpolation method: bicubic
[2024-01-08 17:46:38.356] [mmdeploy] [error] [task.cpp:99] error parsing config: {
  "context": {
    "device": "<any>",
    "model": "<any>",
    "stream": "<any>"
  },
  "input": [
    "img"
  ],
  "module": "Transform",
  "name": "Preprocess",
  "output": [
    "prep_output"
  ],
  "transforms": [
    {
      "backend_args": null,
      "type": "LoadImageFromFile"
    },
    {
      "interpolation": "bicubic",
      "keep_ratio": false,
      "size": [
        640,
        640
      ],
      "type": "Resize"
    },
    {
      "mean": [
        0,
        0,
        0
      ],
      "std": [
        255,
        255,
        255
      ],
      "to_rgb": true,
      "type": "Normalize"
    },
    {
      "size_divisor": 32,
      "type": "Pad"
    },
    {
      "type": "DefaultFormatBundle"
    },
    {
      "keys": [
        "img"
      ],
      "meta_keys": [
        "flip_direction",
        "ori_shape",
        "pad_shape",
        "scale_factor",
        "img_shape",
        "ori_filename",
        "pad_param",
        "img_id",
        "img_norm_cfg",
        "img_path",
        "flip",
        "filename",
        "valid_ratio"
      ],
      "type": "Collect"
    }
  ],
  "type": "Task"
}
Segmentation fault (core dumped)
yinfan98 commented 10 months ago

Hi, I think you trans your onnx -> TensorRT in windows? This step should in your device.

HEIseYOUmolc commented 10 months ago

Hi, I think you trans your onnx -> TensorRT in windows? This step should in your device.

@yinfan98 Thanks for the reply, is what you said a must on the target device? My mmdet on Jeston Nano only allows version 2.27 to apply my model more difficult /(ㄒoㄒ)/~~

yinfan98 commented 10 months ago

Hi @HEIseYOUmolc , you need to export the TensorRT model on the Jetson device. Maybe you can try deployee: https://platform.openmmlab.com/deploee to export TensorRT model on Jetson. I've submitted a PR that supports mmdet 3.0 on jetpack 4.6 devices. it will be live shortly!

HEIseYOUmolc commented 10 months ago

Hi @HEIseYOUmolc , you need to export the TensorRT model on the Jetson device. Maybe you can try deployee: https://platform.openmmlab.com/deploee to export TensorRT model on Jetson. I've submitted a PR that supports mmdet 3.0 on jetpack 4.6 devices. it will be live shortly! @yinfan98

great,Waiting for your release.

I already try to convert my model by trtexec, and try replace the .engine file with the trtexec conversion ,but in c++ demo it also have error like onnxruntime [01/07/2024-18:35:51] [I] === Trace details === [01/07/2024-18:35:51] [I] Trace averages of 10 runs: [01/07/2024-18:35:51] [I] Average on 10 runs - GPU latency: 500.888 ms - Host latency: 501.397 ms (end to end 502 ms, enqueue 191.146 ms) [01/07/2024-18:35:51] [I] [01/07/2024-18:35:51] [I] === Performance summary === [01/07/2024-18:35:51] [I] Throughput: 1.99203 qps [01/07/2024-18:35:51] [I] Latency: min = 498.864 ms, max = 503.506 ms, mean = 501.397 ms, median = 501.815 ms, percentile(99%) = 503.506 ms [01/07/2024-18:35:51] [I] End-to-End Host Latency: min = 499.323 ms, max = 504.746 ms, mean = 502 ms, median = 502.486 ms, percentile(99%) = 504.746 ms [01/07/2024-18:35:51] [I] Enqueue Time: min = 25.5835 ms, max = 363.854 ms, mean = 191.146 ms, median = 189.779 ms, percentile(99%) = 363.854 ms [01/07/2024-18:35:51] [I] H2D Latency: min = 0.48291 ms, max = 0.531982 ms, mean = 0.504181 ms, median = 0.501709 ms, percentile(99%) = 0.531982 ms [01/07/2024-18:35:51] [I] GPU Compute Time: min = 498.351 ms, max = 503.006 ms, mean = 500.888 ms, median = 501.289 ms, percentile(99%) = 503.006 ms [01/07/2024-18:35:51] [I] D2H Latency: min = 0.00305176 ms, max = 0.00585938 ms, mean = 0.00477295 ms, median = 0.00488281 ms, percentile(99%) = 0.00585938 ms [01/07/2024-18:35:51] [I] Total Host Walltime: 5.02 s [01/07/2024-18:35:51] [I] Total GPU Compute Time: 5.00888 s [01/07/2024-18:35:51] [I] Explanations of the performance metrics are printed in the verbose logs. [01/07/2024-18:35:51] [I] &&&& PASSED TensorRT.trtexec [TensorRT v8201] # trtexec --onnx=/home/nvidia/文档/mmdeploy_models/test/end2end.onnx --saveEngine=end2end.engine --plugins=/home/nvidia/文档/mmdeploy/mmdeploy/lib/libmmdeploy_tensorrt_ops.so --workspace=1024

error message [2024-01-09 15:26:53.939] [mmdeploy] [info] [model.cpp:35] [DirectoryModel] Load model: "/home/nvidia/文档/mmdeploy_models/rtdetr-trt-sta-640/" [2024-01-09 15:26:54.174] [mmdeploy] [error] [resize.cpp:84] unsupported interpolation method: bicubic [2024-01-09 15:26:54.174] [mmdeploy] [error] [task.cpp:99] error parsing config: { "context": { "device": "", "model": "", "stream": "" }, "input": [ "img" ], "module": "Transform", "name": "Preprocess", "output": [ "prep_output" ], "transforms": [ { "backend_args": null, "type": "LoadImageFromFile" }, { "interpolation": "bicubic", "keep_ratio": false, "size": [ 640, 640 ], "type": "Resize" }, { "mean": [ 0, 0, 0 ], "std": [ 255, 255, 255 ], "to_rgb": true, "type": "Normalize" }, { "size_divisor": 32, "type": "Pad" }, { "type": "DefaultFormatBundle" }, { "keys": [ "img" ], "meta_keys": [ "pad_param", "ori_filename", "ori_shape", "filename", "flip", "valid_ratio", "img_id", "pad_shape", "img_path", "img_norm_cfg", "img_shape", "flip_direction", "scale_factor" ], "type": "Collect" } ], "type": "Task" } Segmentation fault (core dumped)

HEIseYOUmolc commented 10 months ago

Latest test result: I used jetsonnano for converting the tensorrt format and the conversion works fine, but I still get the following error during the c++ run: ./object_detection cuda /home/nvidia/Documents/work-dir /home/nvidia/Pictures/resources/test1.jpg [2024-01-15 16:55:53.326] [mmdeploy] [info] [model.cpp:35] [DirectoryModel] Load model: "/home/nvidia/Documents/work-dir" [2024-01-15 16:55:54.065] [mmdeploy] [error] [resize.cpp:84] unsupported interpolation method: bicubic [2024-01-15 16:55:54.066] [mmdeploy] [error] [task.cpp:99] error parsing config: { "context": { "device": "", "model": "", "stream": "" }, "input": [ "img" ], "module": "Transform", "name": "Preprocess", "output": [ "prep_output" ], "transforms": [ { "backend_args": null, "type": "LoadImageFromFile" }, { "interpolation": "bicubic", "keep_ratio": false, "size": [ 640, 640 ], "type": "Resize" }, { "mean": [ 0, 0, 0 ], "std": [ 255, 255, 255 ], "to_rgb": true, "type": "Normalize" }, { "size_divisor": 32, "type": "Pad" }, { "type": "DefaultFormatBundle" }, { "keys": [ "img" ], "meta_keys": [ "ori_shape", "pad_shape", "pad_param", "valid_ratio", "flip", "filename", "img_shape", "img_norm_cfg", "ori_filename", "img_id", "scale_factor", "flip_direction", "img_path" ], "type": "Collect" } ], "type": "Task" } Segmentation fault (core dumped)

I think it's probably due to unsupported interpolation method: bicubic, but I don't have the ability to fix him ah!