pyrates-neuroscience / PyRates

Open-source, graph-based Python code generator and analysis toolbox for dynamical systems (pre-implemented and custom models). Most pre-implemented models belong to the family of neural population models.
https://pyrates.readthedocs.io/en/latest/
GNU General Public License v3.0
74 stars 8 forks source link
code-generation delayed-differential-equation differential-equations dynamical-systems fortran90 julia matlab network-simulator neural-networks numpy parameter-search python pytorch scientific-computing scientific-research simulations tensorflow

PyRates

License CircleCI PyPI version Documentation Status Python DOI

PyRates is a framework for dynamical systems modeling, developed by Richard Gast and Daniel Rose. It is an open-source project that everyone is welcome to contribute to.

Basic features

Basic features:

Installation

Stable release (PyPI)

PyRates can be installed via the pip command. We recommend to use Anaconda to create a new python environment with Python >= 3.6 and then simply run the following line from a terminal with the environment being activated:

pip install pyrates

You can install optional (non-default) packages by specifying one or more options in brackets, e.g.:

pip install pyrates[backends]

Available options are backends, dev, and all at the moment. The latter includes all optional packages. Furthermore, the option tests includes all packages necessary to run tests found in the github repository.

Development version (github)

Alternatively, it is possible to clone this repository and run one of the following lines from the directory in which the repository was cloned:

python setup.py install

or

pip install '.[<options>]'

Documentation

For a full API of PyRates, see https://pyrates.readthedocs.io/en/latest/. For examplary simulations and model configurations, please have a look at the jupyter notebooks provided in the documenation folder.

References

If you use this framework, please cite:

Gast, R., Knösche, T. R. & Kennedy, A. (2023). PyRates - A Code-Generation Tool for Dynamical Systems Modeling. PLOS Computational Biology 19 (12), e1011761.

and

Gast, R., Rose, D., Salomon, C., Möller, H. E., Weiskopf, N., & Knösche, T. R. (2019). PyRates-A Python framework for rate-based neural simulations. PloS one, 14(12):e0225900.

Other work that used PyRates:

Weise, K., Poßner, L., Müller, E., Gast, R. & Knösche, T. R. (2020) Software X, 11:100450.

Gast, R., Gong, R., Schmidt, H., Meijer, H.G.E., & Knösche, T.R. (2021) On the Role of Arkypallidal and Prototypical Neurons for Phase Transitions in the External Pallidum. Journal of Neuroscience, 41(31):6673-6683.

Gast, R., Solla, S.A. & Kennedy, A. (2023). Macroscopic dynamics of neural networks with heterogeneous spiking thresholds. Physical Review E, 107(2):024306.

Contact

If you have questions, problems or suggestions regarding PyRates, please contact Richard Gast.