Closed DemonODG closed 3 days ago
Thanks for the flag, there's a discussion over here: https://github.com/pytorch/torchchat/pull/1346 about how to fix
@gabe-l-hart, @leseb Y'all have an appetite to push it through? Or we/I can spin up a RFC for someone to follow up
Shoot! I meant to open the PR from my branch, but was on my phone and got distracted by the time I got to the keys. I'll open it first thing tomorrow, or you're welcome to open it from my fork tonight.
I installed it #1366 but when I run
python3 torchchat.py download mistralai/mistral-7b-instruct-v0.2
it again I get the following error:
Traceback (most recent call last):
File "/home/dimanodg/myproject/torchchat/torchchat.py", line 102, in
Ah, yep, definitely still a bug in there. Good catch (I never made it this far in testing since my home wifi chopped the connection right before the download finished).
I think I have the fix pushed now. Will start the download myself and see if I can get through it. Feel free to test with the updated branch and let me know if anything else crops up!
My download made it through and with the latest fix, I was able to verify that the model can load and runs as expected
🐛 Describe the bug
python3 torchchat.py download mistralai/mistral-7b-instruct-v0.2 ..... ..... File "/home/dimanodg/myproject/torchchat/torchchat/cli/convert_hf_checkpoint.py", line 46, in convert_hf_checkpoint assert len(model_map_json_matches) <= 1, "Found multiple weight mapping files" AssertionError: Found multiple weight mapping files
Versions
Collecting environment information... PyTorch version: 2.6.0.dev20241002+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.30.5 Libc version: glibc-2.35
Python version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.153.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.3.52 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 2080 Ti Nvidia driver version: 560.94 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.7 /usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.7 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True
CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 20 On-line CPU(s) list: 0-19 Vendor ID: GenuineIntel Model name: 12th Gen Intel(R) Core(TM) i7-12700H CPU family: 6 Model: 154 Thread(s) per core: 2 Core(s) per socket: 10 Socket(s): 1 Stepping: 3 BogoMIPS: 5376.02 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities Virtualization: VT-x Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 480 KiB (10 instances) L1i cache: 320 KiB (10 instances) L2 cache: 12.5 MiB (10 instances) L3 cache: 24 MiB (1 instance) Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected
Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] pytorch-triton==3.1.0+cf34004b8a [pip3] torch==2.6.0.dev20241002+cu121 [pip3] torchao==0.5.0 [pip3] torchtune==0.4.0.dev20241010+cu121 [pip3] torchvision==0.20.0.dev20241002+cu121 [conda] No relevant packages