rafaelrojasmiliani / manifolds

Riemmanian Manifold representation library with automatic first order differentiation
1 stars 0 forks source link

GSpline formal definition #4

Open rafaelrojasmiliani opened 2 years ago

rafaelrojasmiliani commented 2 years ago

Let $(M, \mathcal{O}, \mathcal{A})$ be a smooth manifold, where $M$ is a set, $\mathcal{O}$ is a topology on $M$ and $\mathcal{A}$ is a smooth atlas.

Consider the interval $I=[a,b)$ and let $I_i=[ti, t{i+1}), i=1,.., N$ be a partition of $I$ with $t0=a$ and $t{N+1} =b$. We define the GSpline $\gamma: I \longrightarrow M$ with respect to the charts $(\psi_i, U_i)$ at the interval $I_i$ as the map $$\gamma(t) = \psi_j^{-1}\Bigg(\sum \mathbf{y} B_i \circ s_j (t)\Bigg) \ \text{ if } t\in I_j$$

We define at each interval $I_i$ the coordinates of the GSplines as $$q_i(t) = \sum \mathbf{y} B_i \circ s_j (t) \ \text{ if } t\in I_j$$ In other words, a GSpline with respect to the charts $(\psi_i, U_i)$ at the interval $I_i$ is a curve on $ I \longrightarrow M$ such that at the interval it is given at the interval $I_i$ by a GSpline in the codomain of the chart $\psi_i$.

Continuity condition

GSpline representation

Any GSpline of on a manifold is completely define by

rafaelrojasmiliani commented 1 year ago

Desgin

classDiagram

GSpline --|>  LinearManifold
LinearManifold --|> Manifold
GSpline --|> Map