Open Kitdit opened 1 month ago
I couldn't find specific examples or documentation on reranking using custom embeddings with ChromaDB in LlamaIndex. However, I can guide you on how to integrate custom embeddings with ChromaDB and perform reranking using a VectorStoreIndex
.
Integrate Custom Embeddings with ChromaDB:
ChromaVectorStore
class to assign Chroma as the vector store in a StorageContext
.VectorStoreIndex
using the StorageContext
and your custom embedding model.Rerank Results:
VectorIndexRetriever
to get initial results.RankLLMRerank
or ColbertRerank
to reorder the retrieved results based on your custom embeddings.Here's a basic outline of how you might set this up:
import chromadb
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import StorageContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core.retrievers import VectorIndexRetriever
from llama_index.postprocessor.rankLLM_rerank import RankLLMRerank
# Load documents
documents = SimpleDirectoryReader("./data").load_data()
# Initialize Chroma client
db = chromadb.PersistentClient(path="./chroma_db")
chroma_collection = db.get_or_create_collection("quickstart")
# Define custom embedding model
embed_model = HuggingFaceEmbedding(model_name="your-custom-model")
# Assign Chroma as the vector store
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# Create VectorStoreIndex
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context, embed_model=embed_model)
# Retrieve and rerank
query_bundle = QueryBundle("Your query here")
retriever = VectorIndexRetriever(index=index, similarity_top_k=10)
retrieved_nodes = retriever.retrieve(query_bundle)
reranker = RankLLMRerank(top_n=3, model="your-rerank-model")
reranked_nodes = reranker.postprocess_nodes(retrieved_nodes, query_bundle)
# Output reranked results
for node in reranked_nodes:
print(node)
This code demonstrates how to set up a VectorStoreIndex
with custom embeddings and perform reranking. Adjust the embedding model and reranking model to fit your specific needs.
To continue talking to Dosu, mention @dosu.
Code to rerank using Cohere using bearer token?
To implement reranking using Cohere with a bearer token, you can use the CohereRerank
class. Here's a sample implementation:
Ensure you have the cohere
package installed. If not, install it using pip install cohere
.
Set your Cohere API key as an environment variable COHERE_API_KEY
or pass it directly to the CohereRerank
class.
Initialize the CohereRerank
class with the desired model and top_n parameters.
Use the _postprocess_nodes
method to rerank your nodes based on a query.
Here's a sample code snippet:
import os
from cohere import Client
from llama_index.core.postprocessor.types import BaseNodePostprocessor
from llama_index.core.schema import NodeWithScore, QueryBundle
class CohereRerank(BaseNodePostprocessor):
def __init__(self, top_n=2, model="rerank-english-v2.0", api_key=None, base_url=None):
api_key = api_key or os.environ["COHERE_API_KEY"]
self._client = Client(api_key=api_key, base_url=base_url)
super().__init__(top_n=top_n, model=model)
def _postprocess_nodes(self, nodes, query_bundle=None):
if query_bundle is None:
raise ValueError("Missing query bundle in extra info.")
if len(nodes) == 0:
return []
texts = [node.node.get_content(metadata_mode=MetadataMode.EMBED) for node in nodes]
results = self._client.rerank(
model=self.model,
top_n=self.top_n,
query=query_bundle.query_str,
documents=texts,
)
new_nodes = []
for result in results.results:
new_node_with_score = NodeWithScore(
node=nodes[result.index].node, score=result.relevance_score
)
new_nodes.append(new_node_with_score)
return new_nodes
# Example usage
api_key = "your_cohere_api_key"
reranker = CohereRerank(api_key=api_key)
nodes = [...] # List of NodeWithScore objects
query_bundle = QueryBundle(query_str="your_query")
reranked_nodes = reranker._postprocess_nodes(nodes, query_bundle)
Replace "your_cohere_api_key"
and "your_query"
with your actual API key and query string [1].
To continue talking to Dosu, mention @dosu.
Object of type Selector Prompt Template is not JSON serializable using colbert_reranker
The error you're encountering likely stems from trying to serialize an object that includes non-serializable components. The SelectorPromptTemplate
might contain complex data types that aren't directly JSON serializable.
To address this, you can implement a custom serialization method. Here's a general approach:
Custom Serialization: Convert the non-serializable parts of the SelectorPromptTemplate
into a JSON-friendly format, such as strings or dictionaries.
Use Utilities: If the codebase includes utilities for serialization, like the serialize
function, use them to handle complex data types [1].
Here's a basic example of how you might serialize a complex object:
import json
def custom_serialize(obj):
if isinstance(obj, SelectorPromptTemplate):
# Convert to a dictionary or another serializable format
return {
"default_template": str(obj.default_template),
"conditionals": [(str(cond), str(template)) for cond, template in obj.conditionals]
}
# Add more custom serialization logic as needed
raise TypeError(f"Object of type {obj.__class__.__name__} is not JSON serializable")
# Usage
try:
json_data = json.dumps(your_object, default=custom_serialize)
except TypeError as e:
print(e)
Adjust the serialization logic to fit the specific attributes of your SelectorPromptTemplate
.
To continue talking to Dosu, mention @dosu.
def colbert_reranker(index, query, top_n): colbert_reranker = ColbertRerank( top_n=top_n, model="colbert-ir/colbertv2.0", tokenizer="colbert-ir/colbertv2.0", keep_retrieval_score=True, )
query_engine = index.as_query_engine(
similarity_top_k=10,
node_postprocessors=[colbert_reranker],
)
response = query_engine.query(query)
# Print response in a safe manner
for node in response.source_nodes:
try:
print(f"Node ID: {node.id_}")
print(f"Content: {node.node.get_content()}")
print(f"Reranking Score: {node.score}")
print(f"Retrieval Score: {node.node.metadata['retrieval_score']}")
print("=====================================")
except Exception as e:
print(f"Error processing node: {e}")
return response
Question Validation
Question
Code to Reranking using custom embedings, chromadb, vectorstoreindex - RAG