Closed jorgesinval closed 6 years ago
Not sure why this occurred, but 2 others have had this problem, and it was fixed after they installed the latest software:
install.packages("lavaan", repos = "http://www.da.ugent.be", type = "source")
devtools::install_github("simsem/semTools/semTools")
Let me know if there is still an error in the latest versions.
Now I get this error:
`
Error in lavaan::lavTestLRT(...) : argument "object" is missing, with no default
`
On Tue, Jun 19, 2018 at 4:56 PM Terrence notifications@github.com wrote:
Not sure why this occurred, but 2 others have had this problem, and it was fixed after they installed the latest software:
install.packages("lavaan", repos = "http://www.da.ugent.be", type = "source") devtools::install_github("simsem/semTools/semTools")
Let me know if there is still an error in the latest versions.
— You are receiving this because you authored the thread. Reply to this email directly, view it on GitHub https://github.com/simsem/semTools/issues/33#issuecomment-398451338, or mute the thread https://github.com/notifications/unsubscribe-auth/AH5QN8fNs-L7oTvL0ZsFcLfS7mHzmKp7ks5t-R83gaJpZM4UtwBr .
The help page example works fine, so it must be a problem with your analysis. Does your configural model run without an error? Make sure you name all your arguments:
measurementInvarianceCat(model = model, ...)
I'm having a similar issue. The full error message is:
The following model(s) did not converge: fit.configuralfit.loadingsfit.thresholdsfit.means Error in lavaan::lavTestLRT(...) : argument "object" is missing, with no default In addition: Warning message: In lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: some cases are empty and will be ignored: 94
My model runs with regard to the lavaan cfa() function. It is below for reference (nothing complex as you can see):
initial.cfa <- ' PA =~ PA1 + PA2 + PA3 + PA4 + PA5 + PA6 + PA7 + PA8 + PA9 + PA10 '
There is one error that is generated, however, that is common across both analyses: Warning message: In lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: some cases are empty and will be ignored: 94
Please advise.
Also, there does not appear to be an issue with the model syntax.
My help page example works fine. Can you check your sessionInfo()
output to verify the version numbers match?
If you have the latest software, could you please email me (TJorgensen314 "at" gmail "dot" com) enough of your data and the R syntax that reproduces the error?
my session:
version 3.3.3 (2017-03-06) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Debian GNU/Linux 9 (stretch)
semTools_0.4-15.930 lavaan_0.6-2.1261
On Tue, Jun 19, 2018 at 9:09 PM Terrence notifications@github.com wrote:
My help page example works fine. Can you check your sessionInfo() output to verify the version numbers match?
- R version 3.5.0 (2018-04-23)
- lavaan_0.6-2.1261
- semTools_0.4-15.930
If you have the latest software, could you please email me (TJorgensen314 "at" gmail "dot" com) enough of your data and the R syntax that reproduces the error?
— You are receiving this because you authored the thread. Reply to this email directly, view it on GitHub https://github.com/simsem/semTools/issues/33#issuecomment-398528766, or mute the thread https://github.com/notifications/unsubscribe-auth/AH5QN_Qu9QHU8aA_vrU_GAVQutZ5xX7Jks5t-VqDgaJpZM4UtwBr .
All but lavaan match:
So I updated lavaan: *lavaan_0.6-2.1261
I'm still getting the same error.
I'll send you an email. Thanks in advance for you taking a look.
Thanks for sending your data. As I mentioned to @jorgesinval above (and is demonstrated in the help page example), you need to name all your lavaan()
arguments (i.e., including the first model=
argument). Also, missing = "partial"
is not an option for handling missing data. Your example syntax runs fine after you fix these 2 issues.
mi <- measurementInvarianceCat(model = initial.cfa,
ordered = c("PA1", "PA2", "PA3", "PA4", "PA5",
"PA6", "PA7", "PA8", "PA9", "PA10"),
data = data2, group="COND", missing ="pairwise",
parameterization = "theta", estimator = "dwls",
information = "expected")
I will add a check for a model=
argument and issue an error with this instruction, to clarify this point for users in the future.
Thanks, Jorgensen
On Thu, Jun 21, 2018 at 9:07 AM Terrence notifications@github.com wrote:
Thanks for sending your data. As I mentioned to @jorgesinval https://github.com/jorgesinval above (and is demonstrated in the help page example), you need to name all your lavaan() arguments (i.e., including the first model= argument). Also, missing = "partial" is not an option for handling missing data. Your example syntax runs fine after you fix these 2 issues.
mi <- measurementInvarianceCat(model = initial.cfa, ordered = c("PA1", "PA2", "PA3", "PA4", "PA5", "PA6", "PA7", "PA8", "PA9", "PA10"), data = data2, group="COND", missing ="pairwise", parameterization = "theta", estimator = "dwls", information = "expected")
I will add a check for a model= argument and issue an error with this instruction, to clarify this point for users in the future.
— You are receiving this because you were mentioned. Reply to this email directly, view it on GitHub https://github.com/simsem/semTools/issues/33#issuecomment-399013943, or mute the thread https://github.com/notifications/unsubscribe-auth/AH5QN2Ywg5maTS7FTvZ5mYMN3Xs_d6Haks5t-1RGgaJpZM4UtwBr .
Hi Terrence,
Thanks for helping out! I really appreciate you clearly pointing out the mistakes that I made.
I do have a few more questions for you:
References: Nye, C. D., & Drasgow, F. (2011). Assessing Goodness of Fit: Simple Rules of Thumb Simply Do Not Work. Organizational Research Methods, 14(3), 548–570. https://doi.org/10.1177/1094428110368562 https://doi.org/10.1177/1094428110368562
Thanks in advance for your help!
Chris
Christopher M. Castille, Ph.D. Assistant Professor of Management College of Business Administration Nicholls State University email: christopher.castille@nicholls.edu
On Jun 21, 2018, at 3:07 AM, Terrence notifications@github.com wrote:
mi <- measurementInvarianceCat(model = initial.cfa, ordered = c("PA1", "PA2", "PA3", "PA4", "PA5", "PA6", "PA7", "PA8", "PA9", "PA10"), data = data2, group="COND", missing ="pairwise", parameterization = "theta", estimator = "dwls", information = "expected")
fit.measures=
argument.std.all
column in the summary(fit, std = TRUE)
output), that is interpreted as Cohen's d. Likewise, the difference between any other groups' (e.g., groups 2 and 3) standardized means are the Cohen's d for that group comparison. You can obtain the fitted model from the list of results returned by the function.
mi <- measurementInvarianceCat(...)
summary(mi$fit.means, std = TRUE)
Thanks for replying, Terrence.
I’m still not quite seeing ini the output what you are saying. You said:
The first group's mean == 0, so any other group means are therefore already the difference from the first (reference) group. In a standardized metric (the std.all column in the summary(fit, std = TRUE) output), that is interpreted as Cohen's d. Under which part of the output am I to find the group means? My output is below (I’m sorry about dumping it here, but I figured this would help you to help me).
lavaan 0.6-2.1261 optimization ended normally (153 iterations)
Optimization method NLMINB
Number of free parameters 290
Number of equality constraints 135
Number of observations per group
0 117
1 184
Estimator DWLS Model Fit Test Statistic 2060.261 Degrees of freedom 991 P-value (Chi-square) 0.000
Chi-square for each group:
0 1099.841 1 960.420
Parameter Estimates:
Information Expected Information saturated (h1) model Unstructured Standard Errors Standard
Group 1 [0]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
PR =~
PP1 1.000 1.090 0.737
PP2 1.066 0.081 13.111 0.000 1.162 0.758
PP3 1.039 0.079 13.174 0.000 1.133 0.750
PP4 1.215 0.096 12.611 0.000 1.325 0.798
PP5 1.195 0.094 12.777 0.000 1.303 0.793
PP6 0.958 0.070 13.702 0.000 1.044 0.722
PP7 0.909 0.067 13.597 0.000 0.991 0.704
PP8 1.394 0.116 11.996 0.000 1.519 0.835
PP9 1.132 0.082 13.829 0.000 1.234 0.777
PP10 1.045 0.078 13.366 0.000 1.140 0.752
IRB =~
IRB1 1.000 1.754 0.869
IRB2 0.956 0.109 8.761 0.000 1.677 0.859
IRB3 1.205 0.168 7.155 0.000 2.113 0.904
IRB4 1.313 0.197 6.676 0.000 2.302 0.917
IRB5 0.210 0.020 10.371 0.000 0.367 0.345
IRB6 -0.795 0.089 -8.936 0.000 -1.395 -0.813
IRB7 -0.601 0.058 -10.421 0.000 -1.054 -0.726
OCBI =~
OCBI1 1.000 1.221 0.774
OCBI2 0.839 0.072 11.703 0.000 1.025 0.716
OCBI3 0.550 0.043 12.679 0.000 0.672 0.558
OCBI4 0.969 0.084 11.583 0.000 1.183 0.764
OCBI5 0.994 0.084 11.818 0.000 1.214 0.772
OCBI6 0.966 0.080 12.025 0.000 1.179 0.763
OCBI7 0.930 0.080 11.598 0.000 1.135 0.750
OCBO =~
OCBO1 1.000 0.683 0.564
OCBO2 1.128 0.084 13.462 0.000 0.771 0.610
OCBO3 -1.074 0.073 -14.784 0.000 -0.734 -0.592
OCBO4 -0.914 0.068 -13.358 0.000 -0.625 -0.530
OCBO5 -1.154 0.083 -13.881 0.000 -0.788 -0.619
OCBO6 1.138 0.083 13.667 0.000 0.777 0.614
OCBO7 0.878 0.064 13.739 0.000 0.600 0.514
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
PR ~~
IRB 0.627 0.068 9.160 0.000 0.328 0.328
OCBI 0.711 0.059 12.017 0.000 0.534 0.534
OCBO 0.313 0.027 11.475 0.000 0.420 0.420
IRB ~~
OCBI 0.850 0.095 8.905 0.000 0.397 0.397
OCBO 0.971 0.096 10.096 0.000 0.810 0.810
OCBI ~~
OCBO 0.548 0.047 11.580 0.000 0.656 0.656
Intercepts: Estimate Std.Err z-value P(>|z|) Std.lv Std.all .PP1 0.000 0.000 0.000 .PP2 0.000 0.000 0.000 .PP3 0.000 0.000 0.000 .PP4 0.000 0.000 0.000 .PP5 0.000 0.000 0.000 .PP6 0.000 0.000 0.000 .PP7 0.000 0.000 0.000 .PP8 0.000 0.000 0.000 .PP9 0.000 0.000 0.000 .PP10 0.000 0.000 0.000 .IRB1 0.000 0.000 0.000 .IRB2 0.000 0.000 0.000 .IRB3 0.000 0.000 0.000 .IRB4 0.000 0.000 0.000 .IRB5 0.000 0.000 0.000 .IRB6 0.000 0.000 0.000 .IRB7 0.000 0.000 0.000 .OCBI1 0.000 0.000 0.000 .OCBI2 0.000 0.000 0.000 .OCBI3 0.000 0.000 0.000 .OCBI4 0.000 0.000 0.000 .OCBI5 0.000 0.000 0.000 .OCBI6 0.000 0.000 0.000 .OCBI7 0.000 0.000 0.000 .OCBO1 0.000 0.000 0.000 .OCBO2 0.000 0.000 0.000 .OCBO3 0.000 0.000 0.000 .OCBO4 0.000 0.000 0.000 .OCBO5 0.000 0.000 0.000 .OCBO6 0.000 0.000 0.000 .OCBO7 0.000 0.000 0.000 PR 0.000 0.000 0.000 IRB 0.000 0.000 0.000 OCBI 0.000 0.000 0.000 OCBO 0.000 0.000 0.000
Thresholds: Estimate Std.Err z-value P(>|z|) Std.lv Std.all PP1|t1 -3.049 0.281 -10.864 0.000 -3.049 -2.061 PP1|t2 -0.857 0.111 -7.745 0.000 -0.857 -0.579 PP1|t3 0.020 0.101 0.194 0.846 0.020 0.013 PP1|t4 2.108 0.178 11.855 0.000 2.108 1.425 PP2|t1 -2.574 0.221 -11.627 0.000 -2.574 -1.679 PP2|t2 -1.528 0.137 -11.149 0.000 -1.528 -0.996 PP2|t3 0.913 0.116 7.897 0.000 0.913 0.596 PP3|t1 -3.337 0.334 -10.005 0.000 -3.337 -2.208 PP3|t2 -2.405 0.194 -12.404 0.000 -2.405 -1.592 PP3|t3 -1.011 0.117 -8.667 0.000 -1.011 -0.669 PP3|t4 1.485 0.133 11.157 0.000 1.485 0.983 PP4|t1 -3.868 0.418 -9.248 0.000 -3.868 -2.330 PP4|t2 -2.735 0.227 -12.042 0.000 -2.735 -1.647 PP4|t3 -1.836 0.160 -11.477 0.000 -1.836 -1.106 PP4|t4 0.986 0.126 7.840 0.000 0.986 0.594 PP5|t1 -1.568 0.144 -10.865 0.000 -1.568 -0.955 PP5|t2 -0.351 0.113 -3.091 0.002 -0.351 -0.214 PP5|t3 1.788 0.155 11.542 0.000 1.788 1.089 PP6|t1 -2.386 0.189 -12.646 0.000 -2.386 -1.650 PP6|t2 -1.426 0.126 -11.281 0.000 -1.426 -0.986 PP6|t3 0.824 0.108 7.630 0.000 0.824 0.570 PP7|t1 -2.921 0.266 -10.962 0.000 -2.921 -2.075 PP7|t2 -1.337 0.121 -11.079 0.000 -1.337 -0.950 PP7|t3 -0.510 0.100 -5.086 0.000 -0.510 -0.362 PP7|t4 1.281 0.118 10.814 0.000 1.281 0.910 PP8|t1 -3.664 0.357 -10.266 0.000 -3.664 -2.014 PP8|t2 -1.821 0.169 -10.776 0.000 -1.821 -1.001 PP8|t3 -0.423 0.125 -3.388 0.001 -0.423 -0.233 PP8|t4 1.864 0.172 10.823 0.000 1.864 1.025 PP9|t1 -2.928 0.248 -11.794 0.000 -2.928 -1.843 PP9|t2 -1.160 0.125 -9.278 0.000 -1.160 -0.730 PP9|t3 -0.052 0.108 -0.484 0.629 -0.052 -0.033 PP9|t4 1.859 0.154 12.097 0.000 1.859 1.170 PP10|t1 -1.330 0.127 -10.494 0.000 -1.330 -0.877 PP10|t2 0.008 0.104 0.076 0.940 0.008 0.005 PP10|t3 2.085 0.169 12.358 0.000 2.085 1.375 IRB1|t1 -5.550 0.679 -8.179 0.000 -5.550 -2.749 IRB1|t2 -4.065 0.408 -9.954 0.000 -4.065 -2.014 IRB1|t3 0.437 0.172 2.533 0.011 0.437 0.216 IRB2|t1 -4.730 0.490 -9.656 0.000 -4.730 -2.423 IRB2|t2 -3.328 0.320 -10.396 0.000 -3.328 -1.705 IRB2|t3 0.228 0.164 1.393 0.164 0.228 0.117 IRB3|t1 -6.353 0.821 -7.743 0.000 -6.353 -2.718 IRB3|t2 -5.154 0.612 -8.426 0.000 -5.154 -2.205 IRB3|t3 0.164 0.198 0.831 0.406 0.164 0.070 IRB4|t1 -6.224 0.833 -7.467 0.000 -6.224 -2.479 IRB4|t2 -4.515 0.565 -7.992 0.000 -4.515 -1.799 IRB4|t3 0.377 0.216 1.745 0.081 0.377 0.150 IRB5|t1 -2.065 0.163 -12.662 0.000 -2.065 -1.938 IRB5|t2 -1.319 0.108 -12.227 0.000 -1.319 -1.238 IRB5|t3 -0.711 0.086 -8.236 0.000 -0.711 -0.667 IRB5|t4 0.803 0.088 9.107 0.000 0.803 0.754 IRB6|t1 -0.142 0.142 -1.000 0.317 -0.142 -0.083 IRB6|t2 2.390 0.233 10.274 0.000 2.390 1.393 IRB6|t3 3.013 0.284 10.623 0.000 3.013 1.756 IRB7|t1 0.311 0.119 2.617 0.009 0.311 0.214 IRB7|t2 2.166 0.180 12.055 0.000 2.166 1.491 IRB7|t3 2.372 0.198 11.987 0.000 2.372 1.632 IRB7|t4 3.047 0.299 10.184 0.000 3.047 2.097 OCBI1|t1 -2.130 0.180 -11.854 0.000 -2.130 -1.349 OCBI1|t2 -1.266 0.137 -9.220 0.000 -1.266 -0.802 OCBI1|t3 1.177 0.134 8.759 0.000 1.177 0.745 OCBI2|t1 -2.119 0.169 -12.554 0.000 -2.119 -1.480 OCBI2|t2 -1.041 0.119 -8.717 0.000 -1.041 -0.727 OCBI2|t3 0.988 0.117 8.438 0.000 0.988 0.690 OCBI3|t1 -2.273 0.179 -12.673 0.000 -2.273 -1.887 OCBI3|t2 -0.907 0.099 -9.203 0.000 -0.907 -0.753 OCBI3|t3 -0.096 0.088 -1.091 0.275 -0.096 -0.079 OCBI3|t4 1.220 0.108 11.309 0.000 1.220 1.012 OCBI4|t1 -3.558 0.365 -9.746 0.000 -3.558 -2.296 OCBI4|t2 -2.401 0.200 -11.979 0.000 -2.401 -1.549 OCBI4|t3 -1.444 0.143 -10.126 0.000 -1.444 -0.932 OCBI4|t4 1.070 0.129 8.283 0.000 1.070 0.691 OCBI5|t1 -3.613 0.368 -9.808 0.000 -3.613 -2.296 OCBI5|t2 -2.156 0.178 -12.078 0.000 -2.156 -1.370 OCBI5|t3 -1.020 0.129 -7.935 0.000 -1.020 -0.648 OCBI5|t4 0.911 0.126 7.248 0.000 0.911 0.579 OCBI6|t1 -2.863 0.281 -10.206 0.000 -2.863 -1.852 OCBI6|t2 -1.730 0.153 -11.271 0.000 -1.730 -1.119 OCBI6|t3 -0.646 0.118 -5.457 0.000 -0.646 -0.418 OCBI6|t4 1.426 0.140 10.176 0.000 1.426 0.922 OCBI7|t1 -2.797 0.245 -11.400 0.000 -2.797 -1.848 OCBI7|t2 -2.035 0.171 -11.924 0.000 -2.035 -1.345 OCBI7|t3 0.802 0.119 6.720 0.000 0.802 0.530 OCBO1|t1 -2.701 0.237 -11.391 0.000 -2.701 -2.230 OCBO1|t2 -1.675 0.133 -12.554 0.000 -1.675 -1.383 OCBO1|t3 -0.830 0.100 -8.261 0.000 -0.830 -0.685 OCBO1|t4 0.494 0.095 5.208 0.000 0.494 0.408 OCBO2|t1 -2.432 0.195 -12.497 0.000 -2.432 -1.927 OCBO2|t2 -1.582 0.131 -12.048 0.000 -1.582 -1.253 OCBO2|t3 0.207 0.097 2.141 0.032 0.207 0.164 OCBO3|t1 -0.479 0.097 -4.932 0.000 -0.479 -0.386 OCBO3|t2 1.234 0.114 10.787 0.000 1.234 0.995 OCBO3|t3 1.718 0.136 12.660 0.000 1.718 1.385 OCBO3|t4 2.851 0.258 11.058 0.000 2.851 2.299 OCBO4|t1 0.261 0.090 2.911 0.004 0.261 0.222 OCBO4|t2 1.567 0.125 12.540 0.000 1.567 1.329 OCBO4|t3 1.895 0.149 12.696 0.000 1.895 1.607 OCBO5|t1 -0.511 0.101 -5.076 0.000 -0.511 -0.401 OCBO5|t2 0.921 0.108 8.500 0.000 0.921 0.723 OCBO5|t3 1.633 0.135 12.116 0.000 1.633 1.283 OCBO5|t4 2.793 0.271 10.312 0.000 2.793 2.193 OCBO6|t1 -2.241 0.176 -12.748 0.000 -2.241 -1.770 OCBO6|t2 -0.920 0.108 -8.520 0.000 -0.920 -0.726 OCBO6|t3 1.033 0.111 9.317 0.000 1.033 0.815 OCBO7|t1 -2.124 0.164 -12.943 0.000 -2.124 -1.821 OCBO7|t2 -1.038 0.102 -10.142 0.000 -1.038 -0.890 OCBO7|t3 1.139 0.105 10.823 0.000 1.139 0.977
Variances: Estimate Std.Err z-value P(>|z|) Std.lv Std.all .PP1 1.000 1.000 0.457 .PP2 1.000 1.000 0.425 .PP3 1.000 1.000 0.438 .PP4 1.000 1.000 0.363 .PP5 1.000 1.000 0.371 .PP6 1.000 1.000 0.478 .PP7 1.000 1.000 0.505 .PP8 1.000 1.000 0.302 .PP9 1.000 1.000 0.396 .PP10 1.000 1.000 0.435 .IRB1 1.000 1.000 0.245 .IRB2 1.000 1.000 0.262 .IRB3 1.000 1.000 0.183 .IRB4 1.000 1.000 0.159 .IRB5 1.000 1.000 0.881 .IRB6 1.000 1.000 0.339 .IRB7 1.000 1.000 0.474 .OCBI1 1.000 1.000 0.401 .OCBI2 1.000 1.000 0.488 .OCBI3 1.000 1.000 0.689 .OCBI4 1.000 1.000 0.417 .OCBI5 1.000 1.000 0.404 .OCBI6 1.000 1.000 0.418 .OCBI7 1.000 1.000 0.437 .OCBO1 1.000 1.000 0.682 .OCBO2 1.000 1.000 0.627 .OCBO3 1.000 1.000 0.650 .OCBO4 1.000 1.000 0.719 .OCBO5 1.000 1.000 0.617 .OCBO6 1.000 1.000 0.623 .OCBO7 1.000 1.000 0.735 PR 1.189 0.124 9.582 0.000 1.000 1.000 IRB 3.075 0.525 5.856 0.000 1.000 1.000 OCBI 1.491 0.185 8.055 0.000 1.000 1.000 OCBO 0.467 0.055 8.541 0.000 1.000 1.000
Scales y*: Estimate Std.Err z-value P(>|z|) Std.lv Std.all PP1 0.676 0.676 1.000 PP2 0.652 0.652 1.000 PP3 0.662 0.662 1.000 PP4 0.602 0.602 1.000 PP5 0.609 0.609 1.000 PP6 0.692 0.692 1.000 PP7 0.710 0.710 1.000 PP8 0.550 0.550 1.000 PP9 0.630 0.630 1.000 PP10 0.659 0.659 1.000 IRB1 0.495 0.495 1.000 IRB2 0.512 0.512 1.000 IRB3 0.428 0.428 1.000 IRB4 0.398 0.398 1.000 IRB5 0.939 0.939 1.000 IRB6 0.583 0.583 1.000 IRB7 0.688 0.688 1.000 OCBI1 0.634 0.634 1.000 OCBI2 0.698 0.698 1.000 OCBI3 0.830 0.830 1.000 OCBI4 0.645 0.645 1.000 OCBI5 0.636 0.636 1.000 OCBI6 0.647 0.647 1.000 OCBI7 0.661 0.661 1.000 OCBO1 0.826 0.826 1.000 OCBO2 0.792 0.792 1.000 OCBO3 0.806 0.806 1.000 OCBO4 0.848 0.848 1.000 OCBO5 0.785 0.785 1.000 OCBO6 0.790 0.790 1.000 OCBO7 0.858 0.858 1.000
Group 2 [1]:
Latent Variables:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
PR =~
PP1 1.000 0.912 0.674
PP2 1.066 0.081 13.111 0.000 0.972 0.697
PP3 1.039 0.079 13.174 0.000 0.947 0.688
PP4 1.215 0.096 12.611 0.000 1.108 0.742
PP5 1.195 0.094 12.777 0.000 1.090 0.737
PP6 0.958 0.070 13.702 0.000 0.873 0.658
PP7 0.909 0.067 13.597 0.000 0.829 0.638
PP8 1.394 0.116 11.996 0.000 1.271 0.786
PP9 1.132 0.082 13.829 0.000 1.032 0.718
PP10 1.045 0.078 13.366 0.000 0.953 0.690
IRB =~
IRB1 1.000 2.417 0.924
IRB2 0.956 0.109 8.761 0.000 2.311 0.918
IRB3 1.205 0.168 7.155 0.000 2.913 0.946
IRB4 1.313 0.197 6.676 0.000 3.174 0.954
IRB5 0.210 0.020 10.371 0.000 0.507 0.452
IRB6 -0.795 0.089 -8.936 0.000 -1.923 -0.887
IRB7 -0.601 0.058 -10.421 0.000 -1.453 -0.824
OCBI =~
OCBI1 1.000 1.240 0.778
OCBI2 0.839 0.072 11.703 0.000 1.041 0.721
OCBI3 0.550 0.043 12.679 0.000 0.682 0.564
OCBI4 0.969 0.084 11.583 0.000 1.202 0.769
OCBI5 0.994 0.084 11.818 0.000 1.233 0.777
OCBI6 0.966 0.080 12.025 0.000 1.198 0.768
OCBI7 0.930 0.080 11.598 0.000 1.153 0.756
OCBO =~
OCBO1 1.000 0.836 0.641
OCBO2 1.128 0.084 13.462 0.000 0.943 0.686
OCBO3 -1.074 0.073 -14.784 0.000 -0.898 -0.668
OCBO4 -0.914 0.068 -13.358 0.000 -0.764 -0.607
OCBO5 -1.154 0.083 -13.881 0.000 -0.965 -0.694
OCBO6 1.138 0.083 13.667 0.000 0.951 0.689
OCBO7 0.878 0.064 13.739 0.000 0.734 0.592
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
PR ~~
IRB 0.866 0.089 9.716 0.000 0.393 0.393
OCBI 0.630 0.053 11.930 0.000 0.557 0.557
OCBO 0.291 0.026 11.428 0.000 0.382 0.382
IRB ~~
OCBI 1.604 0.167 9.630 0.000 0.535 0.535
OCBO 1.526 0.144 10.590 0.000 0.755 0.755
OCBI ~~
OCBO 0.616 0.051 12.100 0.000 0.594 0.594
Intercepts: Estimate Std.Err z-value P(>|z|) Std.lv Std.all .PP1 0.000 0.000 0.000 .PP2 0.000 0.000 0.000 .PP3 0.000 0.000 0.000 .PP4 0.000 0.000 0.000 .PP5 0.000 0.000 0.000 .PP6 0.000 0.000 0.000 .PP7 0.000 0.000 0.000 .PP8 0.000 0.000 0.000 .PP9 0.000 0.000 0.000 .PP10 0.000 0.000 0.000 .IRB1 0.000 0.000 0.000 .IRB2 0.000 0.000 0.000 .IRB3 0.000 0.000 0.000 .IRB4 0.000 0.000 0.000 .IRB5 0.000 0.000 0.000 .IRB6 0.000 0.000 0.000 .IRB7 0.000 0.000 0.000 .OCBI1 0.000 0.000 0.000 .OCBI2 0.000 0.000 0.000 .OCBI3 0.000 0.000 0.000 .OCBI4 0.000 0.000 0.000 .OCBI5 0.000 0.000 0.000 .OCBI6 0.000 0.000 0.000 .OCBI7 0.000 0.000 0.000 .OCBO1 0.000 0.000 0.000 .OCBO2 0.000 0.000 0.000 .OCBO3 0.000 0.000 0.000 .OCBO4 0.000 0.000 0.000 .OCBO5 0.000 0.000 0.000 .OCBO6 0.000 0.000 0.000 .OCBO7 0.000 0.000 0.000 PR 0.000 0.000 0.000 IRB 0.000 0.000 0.000 OCBI 0.000 0.000 0.000 OCBO 0.000 0.000 0.000
Thresholds: Estimate Std.Err z-value P(>|z|) Std.lv Std.all PP1|t1 -3.049 0.281 -10.864 0.000 -3.049 -2.253 PP1|t2 -0.857 0.111 -7.745 0.000 -0.857 -0.633 PP1|t3 0.020 0.101 0.194 0.846 0.020 0.015 PP1|t4 2.108 0.178 11.855 0.000 2.108 1.558 PP2|t1 -2.574 0.221 -11.627 0.000 -2.574 -1.846 PP2|t2 -1.528 0.137 -11.149 0.000 -1.528 -1.096 PP2|t3 0.913 0.116 7.897 0.000 0.913 0.655 PP3|t1 -3.337 0.334 -10.005 0.000 -3.337 -2.422 PP3|t2 -2.405 0.194 -12.404 0.000 -2.405 -1.746 PP3|t3 -1.011 0.117 -8.667 0.000 -1.011 -0.734 PP3|t4 1.485 0.133 11.157 0.000 1.485 1.078 PP4|t1 -3.868 0.418 -9.248 0.000 -3.868 -2.591 PP4|t2 -2.735 0.227 -12.042 0.000 -2.735 -1.832 PP4|t3 -1.836 0.160 -11.477 0.000 -1.836 -1.230 PP4|t4 0.986 0.126 7.840 0.000 0.986 0.660 PP5|t1 -1.568 0.144 -10.865 0.000 -1.568 -1.060 PP5|t2 -0.351 0.113 -3.091 0.002 -0.351 -0.237 PP5|t3 1.788 0.155 11.542 0.000 1.788 1.209 PP6|t1 -2.386 0.189 -12.646 0.000 -2.386 -1.797 PP6|t2 -1.426 0.126 -11.281 0.000 -1.426 -1.074 PP6|t3 0.824 0.108 7.630 0.000 0.824 0.620 PP7|t1 -2.921 0.266 -10.962 0.000 -2.921 -2.249 PP7|t2 -1.337 0.121 -11.079 0.000 -1.337 -1.030 PP7|t3 -0.510 0.100 -5.086 0.000 -0.510 -0.393 PP7|t4 1.281 0.118 10.814 0.000 1.281 0.986 PP8|t1 -3.664 0.357 -10.266 0.000 -3.664 -2.266 PP8|t2 -1.821 0.169 -10.776 0.000 -1.821 -1.126 PP8|t3 -0.423 0.125 -3.388 0.001 -0.423 -0.262 PP8|t4 1.864 0.172 10.823 0.000 1.864 1.153 PP9|t1 -2.928 0.248 -11.794 0.000 -2.928 -2.037 PP9|t2 -1.160 0.125 -9.278 0.000 -1.160 -0.807 PP9|t3 -0.052 0.108 -0.484 0.629 -0.052 -0.036 PP9|t4 1.859 0.154 12.097 0.000 1.859 1.293 PP10|t1 -1.330 0.127 -10.494 0.000 -1.330 -0.962 PP10|t2 0.008 0.104 0.076 0.940 0.008 0.006 PP10|t3 2.085 0.169 12.358 0.000 2.085 1.509 IRB1|t1 -5.550 0.679 -8.179 0.000 -5.550 -2.122 IRB1|t2 -4.065 0.408 -9.954 0.000 -4.065 -1.554 IRB1|t3 0.437 0.172 2.533 0.011 0.437 0.167 IRB2|t1 -4.730 0.490 -9.656 0.000 -4.730 -1.878 IRB2|t2 -3.328 0.320 -10.396 0.000 -3.328 -1.321 IRB2|t3 0.228 0.164 1.393 0.164 0.228 0.091 IRB3|t1 -6.353 0.821 -7.743 0.000 -6.353 -2.063 IRB3|t2 -5.154 0.612 -8.426 0.000 -5.154 -1.674 IRB3|t3 0.164 0.198 0.831 0.406 0.164 0.053 IRB4|t1 -6.224 0.833 -7.467 0.000 -6.224 -1.870 IRB4|t2 -4.515 0.565 -7.992 0.000 -4.515 -1.357 IRB4|t3 0.377 0.216 1.745 0.081 0.377 0.113 IRB5|t1 -2.065 0.163 -12.662 0.000 -2.065 -1.842 IRB5|t2 -1.319 0.108 -12.227 0.000 -1.319 -1.177 IRB5|t3 -0.711 0.086 -8.236 0.000 -0.711 -0.634 IRB5|t4 0.803 0.088 9.107 0.000 0.803 0.716 IRB6|t1 -0.142 0.142 -1.000 0.317 -0.142 -0.066 IRB6|t2 2.390 0.233 10.274 0.000 2.390 1.103 IRB6|t3 3.013 0.284 10.623 0.000 3.013 1.390 IRB7|t1 0.311 0.119 2.617 0.009 0.311 0.176 IRB7|t2 2.166 0.180 12.055 0.000 2.166 1.228 IRB7|t3 2.372 0.198 11.987 0.000 2.372 1.345 IRB7|t4 3.047 0.299 10.184 0.000 3.047 1.727 OCBI1|t1 -2.130 0.180 -11.854 0.000 -2.130 -1.337 OCBI1|t2 -1.266 0.137 -9.220 0.000 -1.266 -0.794 OCBI1|t3 1.177 0.134 8.759 0.000 1.177 0.739 OCBI2|t1 -2.119 0.169 -12.554 0.000 -2.119 -1.468 OCBI2|t2 -1.041 0.119 -8.717 0.000 -1.041 -0.721 OCBI2|t3 0.988 0.117 8.438 0.000 0.988 0.685 OCBI3|t1 -2.273 0.179 -12.673 0.000 -2.273 -1.877 OCBI3|t2 -0.907 0.099 -9.203 0.000 -0.907 -0.749 OCBI3|t3 -0.096 0.088 -1.091 0.275 -0.096 -0.079 OCBI3|t4 1.220 0.108 11.309 0.000 1.220 1.008 OCBI4|t1 -3.558 0.365 -9.746 0.000 -3.558 -2.275 OCBI4|t2 -2.401 0.200 -11.979 0.000 -2.401 -1.535 OCBI4|t3 -1.444 0.143 -10.126 0.000 -1.444 -0.923 OCBI4|t4 1.070 0.129 8.283 0.000 1.070 0.684 OCBI5|t1 -3.613 0.368 -9.808 0.000 -3.613 -2.275 OCBI5|t2 -2.156 0.178 -12.078 0.000 -2.156 -1.357 OCBI5|t3 -1.020 0.129 -7.935 0.000 -1.020 -0.642 OCBI5|t4 0.911 0.126 7.248 0.000 0.911 0.574 OCBI6|t1 -2.863 0.281 -10.206 0.000 -2.863 -1.835 OCBI6|t2 -1.730 0.153 -11.271 0.000 -1.730 -1.108 OCBI6|t3 -0.646 0.118 -5.457 0.000 -0.646 -0.414 OCBI6|t4 1.426 0.140 10.176 0.000 1.426 0.914 OCBI7|t1 -2.797 0.245 -11.400 0.000 -2.797 -1.832 OCBI7|t2 -2.035 0.171 -11.924 0.000 -2.035 -1.333 OCBI7|t3 0.802 0.119 6.720 0.000 0.802 0.525 OCBO1|t1 -2.701 0.237 -11.391 0.000 -2.701 -2.072 OCBO1|t2 -1.675 0.133 -12.554 0.000 -1.675 -1.285 OCBO1|t3 -0.830 0.100 -8.261 0.000 -0.830 -0.637 OCBO1|t4 0.494 0.095 5.208 0.000 0.494 0.379 OCBO2|t1 -2.432 0.195 -12.497 0.000 -2.432 -1.770 OCBO2|t2 -1.582 0.131 -12.048 0.000 -1.582 -1.151 OCBO2|t3 0.207 0.097 2.141 0.032 0.207 0.151 OCBO3|t1 -0.479 0.097 -4.932 0.000 -0.479 -0.356 OCBO3|t2 1.234 0.114 10.787 0.000 1.234 0.918 OCBO3|t3 1.718 0.136 12.660 0.000 1.718 1.278 OCBO3|t4 2.851 0.258 11.058 0.000 2.851 2.121 OCBO4|t1 0.261 0.090 2.911 0.004 0.261 0.208 OCBO4|t2 1.567 0.125 12.540 0.000 1.567 1.245 OCBO4|t3 1.895 0.149 12.696 0.000 1.895 1.505 OCBO5|t1 -0.511 0.101 -5.076 0.000 -0.511 -0.368 OCBO5|t2 0.921 0.108 8.500 0.000 0.921 0.663 OCBO5|t3 1.633 0.135 12.116 0.000 1.633 1.175 OCBO5|t4 2.793 0.271 10.312 0.000 2.793 2.010 OCBO6|t1 -2.241 0.176 -12.748 0.000 -2.241 -1.624 OCBO6|t2 -0.920 0.108 -8.520 0.000 -0.920 -0.667 OCBO6|t3 1.033 0.111 9.317 0.000 1.033 0.748 OCBO7|t1 -2.124 0.164 -12.943 0.000 -2.124 -1.712 OCBO7|t2 -1.038 0.102 -10.142 0.000 -1.038 -0.837 OCBO7|t3 1.139 0.105 10.823 0.000 1.139 0.919
Variances: Estimate Std.Err z-value P(>|z|) Std.lv Std.all .PP1 1.000 1.000 0.546 .PP2 1.000 1.000 0.514 .PP3 1.000 1.000 0.527 .PP4 1.000 1.000 0.449 .PP5 1.000 1.000 0.457 .PP6 1.000 1.000 0.567 .PP7 1.000 1.000 0.593 .PP8 1.000 1.000 0.382 .PP9 1.000 1.000 0.484 .PP10 1.000 1.000 0.524 .IRB1 1.000 1.000 0.146 .IRB2 1.000 1.000 0.158 .IRB3 1.000 1.000 0.105 .IRB4 1.000 1.000 0.090 .IRB5 1.000 1.000 0.796 .IRB6 1.000 1.000 0.213 .IRB7 1.000 1.000 0.321 .OCBI1 1.000 1.000 0.394 .OCBI2 1.000 1.000 0.480 .OCBI3 1.000 1.000 0.682 .OCBI4 1.000 1.000 0.409 .OCBI5 1.000 1.000 0.397 .OCBI6 1.000 1.000 0.411 .OCBI7 1.000 1.000 0.429 .OCBO1 1.000 1.000 0.589 .OCBO2 1.000 1.000 0.529 .OCBO3 1.000 1.000 0.554 .OCBO4 1.000 1.000 0.631 .OCBO5 1.000 1.000 0.518 .OCBO6 1.000 1.000 0.525 .OCBO7 1.000 1.000 0.650 PR 0.831 0.089 9.389 0.000 1.000 1.000 IRB 5.843 0.943 6.194 0.000 1.000 1.000 OCBI 1.538 0.192 8.020 0.000 1.000 1.000 OCBO 0.699 0.073 9.575 0.000 1.000 1.000
Scales y*: Estimate Std.Err z-value P(>|z|) Std.lv Std.all PP1 0.739 0.739 1.000 PP2 0.717 0.717 1.000 PP3 0.726 0.726 1.000 PP4 0.670 0.670 1.000 PP5 0.676 0.676 1.000 PP6 0.753 0.753 1.000 PP7 0.770 0.770 1.000 PP8 0.618 0.618 1.000 PP9 0.696 0.696 1.000 PP10 0.724 0.724 1.000 IRB1 0.382 0.382 1.000 IRB2 0.397 0.397 1.000 IRB3 0.325 0.325 1.000 IRB4 0.301 0.301 1.000 IRB5 0.892 0.892 1.000 IRB6 0.461 0.461 1.000 IRB7 0.567 0.567 1.000 OCBI1 0.628 0.628 1.000 OCBI2 0.693 0.693 1.000 OCBI3 0.826 0.826 1.000 OCBI4 0.640 0.640 1.000 OCBI5 0.630 0.630 1.000 OCBI6 0.641 0.641 1.000 OCBI7 0.655 0.655 1.000 OCBO1 0.767 0.767 1.000 OCBO2 0.728 0.728 1.000 OCBO3 0.744 0.744 1.000 OCBO4 0.794 0.794 1.000 OCBO5 0.720 0.720 1.000 OCBO6 0.725 0.725 1.000 OCBO7 0.806 0.806 1.000
On Jun 22, 2018, at 6:08 PM, Terrence notifications@github.com wrote:
You can request any fit measures you want using the fit.measures= argument. Yes, and you can investigate the standardized model parameters to see how different the means are. The first group's mean == 0, so any other group means are therefore already the difference from the first (reference) group. In a standardized metric (the std.all column in the summary(fit, std = TRUE) output), that is interpreted as Cohen's d. Likewise, the difference between any other groups' (e.g., groups 2 and 3) standardized means are the Cohen's d for that group comparison. You can obtain the fitted model from the list of results returned by the function. mi <- measurementInvarianceCat(...) summary(mi$fit.means, std = TRUE) — You are receiving this because you commented. Reply to this email directly, view it on GitHub https://github.com/simsem/semTools/issues/33#issuecomment-399606673, or mute the thread https://github.com/notifications/unsubscribe-auth/AEgWFtTxTJEDQ-xI7IB7iY66YqkI-IiDks5t_XjlgaJpZM4UtwBr.
All mean-structure parameters are reported under Intercepts
. You can easily distinguish the indicator intercepts from unconditional means of latent common factors because the indicators' names are preceded by a dot, whereas exogenous factor names are not. In this output, all the means are fixed to zero in both groups. But when loadings and thresholds are constrained to equality across groups, you will be able to freely estimate the latent means in group 2. The measurementInvarianceCat()
should specify this by default, if you are still using it (see mi$fit.thresholds in the output list
object).
I have this problem, when I run:
measurementInvarianceCat(model, data=data, estimator = "WLSMV", group = "group", parameterization="theta",ordered=ordered.items)
I get:
Error in lav_options_set(opt) : lavaan ERROR: estimator ML for ordered data is not supported yet. Use WLSMV instead.