Open kryptonitecircuit2002 opened 4 days ago
I am analyzing a 10X single cell multiome data carried out in 24 hf zebrafish embryos after running standard cellranger arc pipeline for generating counts file and atac fragments
This is the code I used:
library(Seurat) library(Signac) library(dplyr) library(ggplot2) library(GenomicRanges) library(future) library(patchwork) library(hdf5r) library(readr) library(pheatmap) library(ggrepel) library(LSD) library(MASS) library(ensembldb) inputdata.10x <- Read10X_h5("D:/Transit/Single_Cell+ATAC/Control/ATAC/Data+Analysis/Analysis_Control/filtered_feature_bc_matrix_control.h5") fragpath <- "D:/Transit/Single_Cell+ATAC/Control/ATAC/Data+Analysis/Analysis_Control/atac_fragments.tsv.gz" rna_counts <- inputdata.10x$`Gene Expression` atac_counts <- inputdata.10x$Peaks gref.path = "D:/Transit/Single_Cell+ATAC/Control/ATAC/Data+Analysis/Analysis_Control/Danio_rerio.GRCz11.105.gtf" gtf_zf <- rtracklayer::import(gref.path) gene.coords.zf <- gtf_zf gene.coords.zf <- gene.coords.zf[! is.na(gene.coords.zf$gene_name),] gene.coords.zf <- keepStandardChromosomes(gene.coords.zf, pruning.mode = 'coarse') genome(gene.coords.zf) <- 'GRCz11' gene.coords.zf$tx_id <- gene.coords.zf$gene_id gene.coords.zf$transcript_id <- gene.coords.zf$gene_id Control.data <- CreateSeuratObject(counts = rna_counts) chrom_assay <- CreateChromatinAssay( counts = atac_counts, sep = c(":", "-"), genome = 'GRCz11', fragments = fragpath, annotation = gene.coords.zf ) Control.data[["ATAC"]]<- chrom_assay DefaultAssay(Control.data) <- "ATAC" Control.data <- NucleosomeSignal(Control.data) Control.data <- TSSEnrichment(Control.data) DensityScatter(Control.data, x = 'nCount_ATAC', y = 'TSS.enrichment', log_x = TRUE, quantiles = TRUE) VlnPlot( object = Control.data, features = c("nCount_RNA", "nCount_ATAC", "TSS.enrichment", "nucleosome_signal"), ncol = 4, pt.size = 0 ) Control.data <- subset( x = Control.data, subset = nCount_ATAC < 150000 & nCount_RNA < 20000 & nucleosome_signal < 1.5 & TSS.enrichment > 1 ) DefaultAssay(Control.data) <- "RNA" Control.data <- SCTransform(Control.data) Control.data <- RunPCA(Control.data) Control.data <- RunUMAP(Control.data, dims = 1:50, reduction.name = 'umap.rna', reduction.key = 'rnaUMAP_') DefaultAssay(Control.data) <- "ATAC" Control.data <- RunTFIDF(Control.data) Control.data <- FindTopFeatures(Control.data, min.cutoff = 'q0') Control.data <- RunSVD(Control.data) Control.data <- RunUMAP(Control.data, reduction = 'lsi', dims = 2:50, reduction.name = "umap.atac", reduction.key = "atacUMAP_") Control.data <- FindMultiModalNeighbors(Control.data, reduction.list = list("pca", "lsi"), dims.list = list(1:50, 2:50)) Control.data <- RunUMAP(Control.data, nn.name = "weighted.nn", reduction.name = "wnn.umap", reduction.key = "wnnUMAP_") Control.data <- FindClusters(Control.data, graph.name = "wsnn", algorithm = 3, verbose = FALSE) p1 <- DimPlot(Control.data, reduction = "umap.rna", label = TRUE, label.size = 2.5, repel = TRUE) + ggtitle("RNA") p2 <- DimPlot(Control.data, reduction = "umap.atac", label = TRUE, label.size = 2.5, repel = TRUE) + ggtitle("ATAC") p3 <- DimPlot(Control.data, reduction = "wnn.umap", label = TRUE, label.size = 2.5, repel = TRUE) + ggtitle("WNN") p1 + p2 + p3 & NoLegend() & theme(plot.title = element_text(hjust = 0.5)) Control.data <- RegionStats(Control.data, genome = BSgenome.Drerio.UCSC.danRer11) Control.data <- LinkPeaks( object = Control.data, peak.assay = "ATAC", expression.assay = "SCT", genes.use = c("mitfa") ) CoveragePlot(Control.data, region = "sox10", features = "sox10", assay = 'ATAC', expression.assay = 'SCT', peaks = TRUE)
However I am facing issues when I am trying to run LinkPeaks for my data and facing this error:
> Control.data <- LinkPeaks( + object = Control.data, + peak.assay = "ATAC", + expression.assay = "SCT", + genes.use = c("mitfa") + ) Testing 1 genes and 136545 peaks | | 0 % ~calculating Error in density.default(x = query.feature[[featmatch]], kernel = "gaussian", : argument 'x' must be numeric In addition: Warning messages: 1: In .merge_two_Seqinfo_objects(x, y) : Each of the 2 combined objects has sequence levels not in the other: - in 'x': KN147632.2, KN147636.1, KN147637.2, KN147651.2, KN149685.1, KN149686.1, KN149688.2, KN149689.2, KN149690.1, KN149696.2, KN149702.1, KN149707.2, KN149710.1, KN149711.1, KN149713.1, KN149725.1, KN149729.1, KN149732.1, KN149735.1, KN149739.1, KN149749.1, KN149764.1, KN149778.1, KN149779.1, KN149782.1, KN149790.1, KN149793.1, KN149797.1, KN149800.1, KN149813.1, KN149816.1, KN149818.1, KN149840.1, KN149847.1, KN149855.1, KN149857.1, KN149859.1, KN149874.1, KN149880.1, KN149883.1, KN149884.1, KN149895.1, KN149909.1, KN149912.1, KN149932.1, KN149943.1, KN149946.1, KN149948.1, KN149955.1, KN149959.1, KN149968.1, KN149978.1, KN149984.1, KN149992.1, KN149995.1, KN149997.1, KN149998.1, KN150000.1, KN150008.1, KN150015.1, KN150019.2, KN150030.1, KN150032.1, KN150041.2, KN150062.1, KN150067.1, KN150086.1, KN150098.1, KN150102.1, KN150104.1, KN150115.1, KN150120.1, KN150125.1, KN150131.1, KN150137.1, KN150141.1, KN15015 [... truncated] 2: In MatchRegionStats(meta.feature = meta.use, query.feature = pk.use[x, : Requested more features than present in supplied data. Returning 0 features
Can anyone help me how to fix this?
Here is my sessioninfo:
R version 4.4.1 (2024-06-14 ucrt) Platform: x86_64-w64-mingw32/x64 Running under: Windows 11 x64 (build 22631) Matrix products: default locale: [1] LC_COLLATE=English_India.utf8 LC_CTYPE=English_India.utf8 LC_MONETARY=English_India.utf8 [4] LC_NUMERIC=C LC_TIME=English_India.utf8 time zone: Asia/Calcutta tzcode source: internal attached base packages: [1] stats4 stats graphics grDevices utils datasets methods base other attached packages: [1] BSgenome.Drerio.UCSC.danRer11_1.4.2 BSgenome_1.72.0 rtracklayer_1.64.0 [4] BiocIO_1.14.0 Biostrings_2.72.1 XVector_0.44.0 [7] ensembldb_2.28.1 AnnotationFilter_1.28.0 GenomicFeatures_1.56.0 [10] AnnotationDbi_1.66.0 Biobase_2.64.0 MASS_7.3-61 [13] LSD_4.1-0 ggrepel_0.9.6 pheatmap_1.0.12 [16] readr_2.1.5 hdf5r_1.3.11 patchwork_1.3.0 [19] future_1.34.0 GenomicRanges_1.56.2 GenomeInfoDb_1.40.1 [22] IRanges_2.38.1 S4Vectors_0.42.1 BiocGenerics_0.50.0 [25] ggplot2_3.5.1 dplyr_1.1.4 Signac_1.14.0 [28] Seurat_5.1.0 SeuratObject_5.0.2 sp_2.1-4 loaded via a namespace (and not attached): [1] RcppAnnoy_0.0.22 splines_4.4.1 later_1.3.2 bitops_1.0-9 [5] tibble_3.2.1 polyclip_1.10-7 XML_3.99-0.17 fastDummies_1.7.4 [9] lifecycle_1.0.4 globals_0.16.3 lattice_0.22-6 magrittr_2.0.3 [13] plotly_4.10.4 yaml_2.3.10 httpuv_1.6.15 sctransform_0.4.1 [17] spam_2.11-0 spatstat.sparse_3.1-0 reticulate_1.39.0 cowplot_1.1.3 [21] pbapply_1.7-2 DBI_1.2.3 RColorBrewer_1.1-3 abind_1.4-8 [25] zlibbioc_1.50.0 Rtsne_0.17 purrr_1.0.2 RCurl_1.98-1.16 [29] GenomeInfoDbData_1.2.12 irlba_2.3.5.1 listenv_0.9.1 spatstat.utils_3.1-1 [33] goftest_1.2-3 RSpectra_0.16-2 spatstat.random_3.3-2 fitdistrplus_1.2-1 [37] parallelly_1.39.0 DelayedArray_0.30.1 leiden_0.4.3.1 codetools_0.2-20 [41] RcppRoll_0.3.1 tidyselect_1.2.1 UCSC.utils_1.0.0 farver_2.1.2 [45] matrixStats_1.4.1 spatstat.explore_3.3-3 GenomicAlignments_1.40.0 jsonlite_1.8.9 [49] progressr_0.15.1 ggridges_0.5.6 survival_3.7-0 tools_4.4.1 [53] ica_1.0-3 Rcpp_1.0.13 glue_1.7.0 SparseArray_1.4.8 [57] gridExtra_2.3 MatrixGenerics_1.16.0 withr_3.0.2 fastmap_1.2.0 [61] fansi_1.0.6 digest_0.6.37 R6_2.5.1 mime_0.12 [65] colorspace_2.1-1 scattermore_1.2 tensor_1.5 spatstat.data_3.1-4 [69] RSQLite_2.3.8 utf8_1.2.4 tidyr_1.3.1 generics_0.1.3 [73] data.table_1.16.2 S4Arrays_1.4.1 httr_1.4.7 htmlwidgets_1.6.4 [77] uwot_0.2.2 pkgconfig_2.0.3 gtable_0.3.6 blob_1.2.4 [81] lmtest_0.9-40 htmltools_0.5.8.1 dotCall64_1.2 ProtGenerics_1.36.0 [85] scales_1.3.0 png_0.1-8 spatstat.univar_3.1-1 rstudioapi_0.17.1 [89] tzdb_0.4.0 reshape2_1.4.4 rjson_0.2.23 nlme_3.1-166 [93] curl_6.0.1 zoo_1.8-12 cachem_1.1.0 stringr_1.5.1 [97] KernSmooth_2.23-24 vipor_0.4.7 parallel_4.4.1 miniUI_0.1.1.1 [101] ggrastr_1.0.2 restfulr_0.0.15 pillar_1.9.0 grid_4.4.1 [105] vctrs_0.6.5 RANN_2.6.2 promises_1.3.0 xtable_1.8-4 [109] cluster_2.1.6 beeswarm_0.4.0 cli_3.6.3 compiler_4.4.1 [113] Rsamtools_2.20.0 rlang_1.1.4 crayon_1.5.3 future.apply_1.11.3 [117] labeling_0.4.3 ggbeeswarm_0.7.2 plyr_1.8.9 stringi_1.8.4 [121] viridisLite_0.4.2 deldir_2.0-4 BiocParallel_1.38.0 munsell_0.5.1 [125] lazyeval_0.2.2 spatstat.geom_3.3-3 Matrix_1.7-0 RcppHNSW_0.6.0 [129] hms_1.1.3 bit64_4.5.2 KEGGREST_1.44.1 shiny_1.9.1 [133] SummarizedExperiment_1.34.0 ROCR_1.0-11 igraph_2.0.3 memoise_2.0.1 [137] fastmatch_1.1-4 bit_4.5.0 Warning messages: 1: In grid.Call(C_convert, x, as.integer(whatfrom), as.integer(whatto), : Viewport has zero dimension(s) 2: In grid.Call(C_convert, x, as.integer(whatfrom), as.integer(whatto), : Viewport has zero dimension(s) 3: In grid.Call(C_convert, x, as.integer(whatfrom), as.integer(whatto), : Viewport has zero dimension(s) 4: In grid.Call(C_convert, x, as.integer(whatfrom), as.integer(whatto), : Viewport has zero dimension(s) 5: In grid.Call(C_convert, x, as.integer(whatfrom), as.integer(whatto), : Viewport has zero dimension(s) 6: In grid.Call(C_convert, x, as.integer(whatfrom), as.integer(whatto), : Viewport has zero dimension(s)
Have you encountered an issue where peaks and their linked genes are located on different chromosomes? @kryptonitecircuit2002
I am analyzing a 10X single cell multiome data carried out in 24 hf zebrafish embryos after running standard cellranger arc pipeline for generating counts file and atac fragments
This is the code I used:
However I am facing issues when I am trying to run LinkPeaks for my data and facing this error:
Can anyone help me how to fix this?
Here is my sessioninfo: