talmolab / sleap

A deep learning framework for multi-animal pose tracking.
https://sleap.ai
Other
436 stars 97 forks source link

Training error in multi-animal top-down-model #2004

Open pinjuu opened 1 month ago

pinjuu commented 1 month ago

Bug description

When I try to train the model this error occurs:

File "C:\Users\spike.conda\envs\sleap\lib\site-packages\tensorflow\python\util\traceback_utils.py", line 153, in error_handler raise e.with_traceback(filtered_tb) from None File "C:\Users\spike.conda\envs\sleap\lib\site-packages\tensorflow\python\framework\func_graph.py", line 1129, in autograph_handler raise e.ag_error_metadata.to_exception(e) TypeError: in user code:

File "C:\Users\spike\.conda\envs\sleap\lib\site-packages\keras\engine\training.py", line 1621, in predict_function  *
    return step_function(self, iterator)
File "C:\Users\spike\.conda\envs\sleap\lib\site-packages\keras\engine\training.py", line 1611, in step_function  **
    outputs = model.distribute_strategy.run(run_step, args=(data,))
File "C:\Users\spike\.conda\envs\sleap\lib\site-packages\keras\engine\training.py", line 1604, in run_step  **
    outputs = model.predict_step(data)
File "C:\Users\spike\.conda\envs\sleap\lib\site-packages\keras\engine\training.py", line 1572, in predict_step
    return self(x, training=False)
File "C:\Users\spike\.conda\envs\sleap\lib\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler
    raise e.with_traceback(filtered_tb) from None

TypeError: Exception encountered when calling layer "top_down_multi_class_inference_model" (type TopDownMultiClassInferenceModel).

in user code:

    File "C:\Users\spike\.conda\envs\sleap\lib\site-packages\sleap\nn\inference.py", line 4102, in call  *
        crop_output = self.centroid_crop(example)
    File "C:\Users\spike\.conda\envs\sleap\lib\site-packages\keras\utils\traceback_utils.py", line 67, in error_handler  **
        raise e.with_traceback(filtered_tb) from None

    TypeError: Exception encountered when calling layer "centroid_crop_ground_truth" (type CentroidCropGroundTruth).

    in user code:

        File "C:\Users\spike\.conda\envs\sleap\lib\site-packages\sleap\nn\inference.py", line 772, in call  *
            crops = sleap.nn.peak_finding.crop_bboxes(full_imgs, bboxes, crop_sample_inds)
        File "C:\Users\spike\.conda\envs\sleap\lib\site-packages\sleap\nn\peak_finding.py", line 173, in crop_bboxes  *
            image_height = tf.shape(images)[1]

        TypeError: Failed to convert elements of tf.RaggedTensor(values=tf.RaggedTensor(values=Tensor("RaggedFromVariant_1/RaggedTensorFromVariant:2", shape=(None, 1), dtype=uint8), row_splits=Tensor("RaggedFromVariant_1/RaggedTensorFromVariant:1", shape=(None,), dtype=int64)), row_splits=Tensor("RaggedFromVariant_1/RaggedTensorFromVariant:0", shape=(5,), dtype=int64)) to Tensor. Consider casting elements to a supported type. See https://www.tensorflow.org/api_docs/python/tf/dtypes for supported TF dtypes.

    Call arguments received:
      • example_gt={'image': 'tf.RaggedTensor(values=tf.RaggedTensor(values=Tensor("RaggedFromVariant_1/RaggedTensorFromVariant:2", shape=(None, 1), dtype=uint8), row_splits=Tensor("RaggedFromVariant_1/RaggedTensorFromVariant:1", shape=(None,), dtype=int64)), row_splits=Tensor("RaggedFromVariant_1/RaggedTensorFromVariant:0", shape=(5,), dtype=int64))', 'raw_image_size': 'tf.Tensor(shape=(4, 3), dtype=int32)', 'example_ind': 'tf.Tensor(shape=(4, 1), dtype=int64)', 'video_ind': 'tf.Tensor(shape=(4, 1), dtype=int32)', 'frame_ind': 'tf.Tensor(shape=(4, 1), dtype=int64)', 'scale': 'tf.Tensor(shape=(4, 2), dtype=float32)', 'instances': 'tf.RaggedTensor(values=tf.RaggedTensor(values=Tensor("RaggedFromVariant_2/RaggedTensorFromVariant:2", shape=(None, 2), dtype=float32), row_splits=Tensor("RaggedFromVariant_2/RaggedTensorFromVariant:1", shape=(None,), dtype=int64)), row_splits=Tensor("RaggedFromVariant_2/RaggedTensorFromVariant:0", shape=(5,), dtype=int64))', 'skeleton_inds': 'tf.RaggedTensor(values=Tensor("RaggedFromVariant_3/RaggedTensorFromVariant:1", shape=(None,), dtype=int32), row_splits=Tensor("RaggedFromVariant_3/RaggedTensorFromVariant:0", shape=(5,), dtype=int64))', 'track_inds': 'tf.RaggedTensor(values=Tensor("RaggedFromVariant_4/RaggedTensorFromVariant:1", shape=(None,), dtype=int32), row_splits=Tensor("RaggedFromVariant_4/RaggedTensorFromVariant:0", shape=(5,), dtype=int64))', 'n_tracks': 'tf.Tensor(shape=(4, 1), dtype=int32)', 'centroids': 'tf.RaggedTensor(values=Tensor("RaggedFromVariant/RaggedTensorFromVariant:1", shape=(None, 2), dtype=float32), row_splits=Tensor("RaggedFromVariant/RaggedTensorFromVariant:0", shape=(5,), dtype=int64))'}

Call arguments received:
  • example={'image': 'tf.RaggedTensor(values=tf.RaggedTensor(values=Tensor("RaggedFromVariant_1/RaggedTensorFromVariant:2", shape=(None, 1), dtype=uint8), row_splits=Tensor("RaggedFromVariant_1/RaggedTensorFromVariant:1", shape=(None,), dtype=int64)), row_splits=Tensor("RaggedFromVariant_1/RaggedTensorFromVariant:0", shape=(5,), dtype=int64))', 'raw_image_size': 'tf.Tensor(shape=(4, 3), dtype=int32)', 'example_ind': 'tf.Tensor(shape=(4, 1), dtype=int64)', 'video_ind': 'tf.Tensor(shape=(4, 1), dtype=int32)', 'frame_ind': 'tf.Tensor(shape=(4, 1), dtype=int64)', 'scale': 'tf.Tensor(shape=(4, 2), dtype=float32)', 'instances': 'tf.RaggedTensor(values=tf.RaggedTensor(values=Tensor("RaggedFromVariant_2/RaggedTensorFromVariant:2", shape=(None, 2), dtype=float32), row_splits=Tensor("RaggedFromVariant_2/RaggedTensorFromVariant:1", shape=(None,), dtype=int64)), row_splits=Tensor("RaggedFromVariant_2/RaggedTensorFromVariant:0", shape=(5,), dtype=int64))', 'skeleton_inds': 'tf.RaggedTensor(values=Tensor("RaggedFromVariant_3/RaggedTensorFromVariant:1", shape=(None,), dtype=int32), row_splits=Tensor("RaggedFromVariant_3/RaggedTensorFromVariant:0", shape=(5,), dtype=int64))', 'track_inds': 'tf.RaggedTensor(values=Tensor("RaggedFromVariant_4/RaggedTensorFromVariant:1", shape=(None,), dtype=int32), row_splits=Tensor("RaggedFromVariant_4/RaggedTensorFromVariant:0", shape=(5,), dtype=int64))', 'n_tracks': 'tf.Tensor(shape=(4, 1), dtype=int32)', 'centroids': 'tf.RaggedTensor(values=Tensor("RaggedFromVariant/RaggedTensorFromVariant:1", shape=(None, 2), dtype=float32), row_splits=Tensor("RaggedFromVariant/RaggedTensorFromVariant:0", shape=(5,), dtype=int64))'}

Expected behaviour

Succesfuly train the model

Actual behaviour

Training does not complete due to the error

Your personal set up

SLEAP v1.3.3

Environment packages ``` # paste output of `pip freeze` or `conda list` here ```
Logs ``` # paste relevant logs here, if any ```

Screenshots

How to reproduce

  1. Go to '...'
  2. Click on '....'
  3. Scroll down to '....'
  4. See error
eberrigan commented 1 month ago

Hi @pinjuu,

I will just need some more information from you.

How did you install SLEAP?

Please provide the command you are using to get this error.

Thanks!

Elizabeth

pinjuu commented 1 month ago

Installation was conda package

{ "_pipeline": "multi-animal top-down-id", "_ensure_channels": "", "outputs.run_name_prefix": "LBNcohort1_SIBody231024", "outputs.runs_folder": "C:/Users/spike/Desktop/sleap/SLEAP Projects\models", "outputs.tags": "", "outputs.checkpointing.best_model": true, "outputs.checkpointing.latest_model": false, "outputs.checkpointing.final_model": false, "outputs.tensorboard.write_logs": false, "_save_viz": true, "_predict_frames": "suggested frames (1539 total frames)", "model.heads.centroid.sigma": 2.75, "model.heads.multi_class_topdown.confmaps.anchor_part": null, "model.heads.multi_class_topdown.confmaps.sigma": 5.0, "model.heads.centroid.anchor_part": null, "model.heads.centered_instance.anchor_part": null, "data.instance_cropping.center_on_part": null } { "data": { "labels": { "training_labels": "C:/Users/spike/Desktop/sleap/SLEAP Projects/SI_Cohort1_body.slp", "validation_labels": null, "validation_fraction": 0.1, "test_labels": null, "split_by_inds": false, "training_inds": [ 613, 555, 277, 243, 476, 176, 386, 524, 506, 351, 553, 219, 462, 436, 70, 425, 547, 265, 504, 138, 264, 153, 597, 191, 438, 434, 416, 155, 24, 647, 37, 580, 530, 402, 193, 391, 593, 286, 376, 375, 497, 454, 563, 325, 141, 624, 632, 43, 47, 465, 261, 457, 560, 110, 441, 579, 214, 196, 312, 105, 229, 446, 385, 466, 189, 573, 633, 337, 308, 165, 182, 213, 612, 634, 269, 297, 89, 498, 73, 594, 107, 522, 493, 329, 100, 326, 185, 34, 589, 523, 420, 353, 111, 152, 513, 311, 417, 543, 114, 574, 617, 419, 267, 203, 564, 590, 568, 144, 382, 246, 290, 575, 600, 480, 35, 266, 461, 54, 208, 215, 147, 81, 183, 303, 448, 501, 640, 588, 406, 171, 562, 96, 10, 260, 108, 190, 328, 474, 603, 528, 399, 550, 137, 82, 366, 488, 160, 378, 32, 230, 510, 552, 120, 17, 322, 502, 161, 313, 398, 646, 63, 332, 595, 551, 320, 451, 278, 516, 75, 534, 44, 350, 41, 292, 607, 452, 86, 217, 405, 50, 103, 291, 489, 42, 336, 317, 340, 578, 80, 245, 442, 599, 372, 360, 540, 380, 115, 459, 126, 26, 358, 389, 252, 604, 381, 427, 301, 85, 495, 307, 636, 61, 247, 468, 0, 439, 512, 431, 587, 242, 486, 565, 5, 538, 169, 496, 157, 638, 293, 403, 135, 197, 251, 521, 377, 621, 228, 629, 148, 637, 94, 503, 455, 585, 542, 124, 117, 11, 428, 271, 287, 131, 156, 78, 544, 341, 45, 401, 72, 56, 482, 66, 370, 361, 300, 275, 440, 306, 248, 626, 392, 235, 469, 334, 608, 253, 475, 122, 525, 145, 30, 413, 234, 159, 545, 333, 59, 279, 412, 635, 280, 233, 184, 396, 374, 28, 324, 91, 487, 226, 150, 511, 58, 40, 255, 395, 345, 133, 109, 500, 338, 355, 281, 388, 354, 598, 136, 289, 616, 139, 357, 384, 299, 285, 426, 463, 433, 201, 223, 12, 532, 140, 514, 163, 102, 218, 211, 92, 620, 49, 499, 227, 195, 21, 481, 359, 539, 9, 186, 373, 128, 142, 3, 270, 421, 554, 52, 134, 435, 397, 576, 212, 164, 648, 273, 470, 304, 238, 173, 149, 494, 118, 364, 172, 288, 478, 394, 318, 437, 168, 549, 236, 33, 400, 210, 335, 611, 644, 60, 453, 445, 609, 529, 87, 298, 343, 422, 84, 483, 64, 414, 321, 69, 309, 315, 154, 200, 449, 348, 586, 123, 369, 561, 390, 2, 231, 256, 302, 491, 569, 1, 363, 257, 55, 249, 619, 254, 19, 232, 98, 410, 119, 127, 650, 519, 46, 533, 198, 23, 331, 258, 591, 566, 371, 216, 367, 125, 472, 379, 162, 222, 346, 53, 368, 505, 27, 464, 408, 113, 51, 4, 430, 627, 13, 387, 583, 22, 146, 596, 31, 316, 263, 404, 365, 18, 225, 537, 88, 179, 330, 7, 68, 170, 415, 546, 132, 268, 194, 79, 25, 456, 526, 129, 202, 175, 178, 106, 305, 205, 14, 548, 282, 557, 71, 606, 116, 577, 90, 29, 67, 536, 262, 344, 460, 424, 477, 610, 559, 166, 250, 167, 535, 485, 582, 187, 630, 641, 206, 584, 181, 121, 342, 104, 622, 484, 432, 48, 93, 8, 615, 339, 407, 444, 447, 272, 319, 347, 276, 507, 239, 174, 531, 520, 158, 349, 411, 643, 284, 74, 443, 418, 101, 221, 57, 259, 143, 450, 65, 623, 556, 509, 237, 207, 625, 605, 83, 572, 515, 130, 356, 490, 6, 645, 151, 492, 112 ], "validation_inds": [ 296, 62, 558, 180, 508, 244, 649, 383, 628, 473, 479, 467, 15, 527, 631, 517, 95, 352, 97, 541, 220, 362, 16, 294, 274, 639, 458, 471, 518, 423, 177, 295, 567, 310, 76, 77, 283, 571, 592, 602, 614, 209, 20, 99, 323, 570, 199, 39, 240, 642, 327, 241, 314, 224, 204, 188, 192, 36, 393, 581, 38, 601, 429, 618, 409 ], "test_inds": null, "search_path_hints": [ "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "" ], "skeletons": [] }, "preprocessing": { "ensure_rgb": false, "ensure_grayscale": false, "imagenet_mode": null, "input_scaling": 0.5, "pad_to_stride": 16, "resize_and_pad_to_target": true, "target_height": 1024, "target_width": 1280 }, "instance_cropping": { "center_on_part": null, "crop_size": null, "crop_size_detection_padding": 16 } }, "model": { "backbone": { "leap": null, "unet": { "stem_stride": null, "max_stride": 16, "output_stride": 2, "filters": 16, "filters_rate": 2.0, "middle_block": true, "up_interpolate": true, "stacks": 1 }, "hourglass": null, "resnet": null, "pretrained_encoder": null }, "heads": { "single_instance": null, "centroid": { "anchor_part": null, "sigma": 2.75, "output_stride": 2, "loss_weight": 1.0, "offset_refinement": false }, "centered_instance": null, "multi_instance": null, "multi_class_bottomup": null, "multi_class_topdown": null }, "base_checkpoint": null }, "optimization": { "preload_data": true, "augmentation_config": { "rotate": true, "rotation_min_angle": -15.0, "rotation_max_angle": 15.0, "translate": false, "translate_min": -5, "translate_max": 5, "scale": false, "scale_min": 0.9, "scale_max": 1.1, "uniform_noise": false, "uniform_noise_min_val": 0.0, "uniform_noise_max_val": 10.0, "gaussian_noise": false, "gaussian_noise_mean": 5.0, "gaussian_noise_stddev": 1.0, "contrast": false, "contrast_min_gamma": 0.5, "contrast_max_gamma": 2.0, "brightness": false, "brightness_min_val": 0.0, "brightness_max_val": 10.0, "random_crop": false, "random_crop_height": 256, "random_crop_width": 256, "random_flip": false, "flip_horizontal": false }, "online_shuffling": true, "shuffle_buffer_size": 128, "prefetch": true, "batch_size": 4, "batches_per_epoch": 200, "min_batches_per_epoch": 200, "val_batches_per_epoch": 10, "min_val_batches_per_epoch": 10, "epochs": 200, "optimizer": "adam", "initial_learning_rate": 0.0001, "learning_rate_schedule": { "reduce_on_plateau": true, "reduction_factor": 0.5, "plateau_min_delta": 1e-06, "plateau_patience": 5, "plateau_cooldown": 3, "min_learning_rate": 1e-08 }, "hard_keypoint_mining": { "online_mining": false, "hard_to_easy_ratio": 2.0, "min_hard_keypoints": 2, "max_hard_keypoints": null, "loss_scale": 5.0 }, "early_stopping": { "stop_training_on_plateau": true, "plateau_min_delta": 1e-08, "plateau_patience": 20 } }, "outputs": { "save_outputs": true, "run_name": null, "run_name_prefix": "LBNcohort1_SIBody231024", "run_name_suffix": null, "runs_folder": "C:/Users/spike/Desktop/sleap/SLEAP Projects\models", "tags": [ "" ], "save_visualizations": true, "delete_viz_images": true, "zip_outputs": false, "log_to_csv": true, "checkpointing": { "initial_model": false, "best_model": true, "every_epoch": false, "latest_model": false, "final_model": false }, "tensorboard": { "write_logs": false, "loss_frequency": "epoch", "architecture_graph": false, "profile_graph": false, "visualizations": true }, "zmq": { "subscribe_to_controller": true, "controller_address": "tcp://127.0.0.1:9000", "controller_polling_timeout": 10, "publish_updates": true, "publish_address": "tcp://127.0.0.1:9001" } }, "name": "", "description": "", "sleap_version": "1.3.3", "filename": "C:/Users/spike/Desktop/sleap/SLEAP Projects\models\LBNcohort1_SIBody231024241023_102341.centroid.n=651\training_config.json" } { "data": { "labels": { "training_labels": "C:/Users/spike/Desktop/sleap/SLEAP Projects/SI_Cohort1_body.slp", "validation_labels": null, "validation_fraction": 0.1, "test_labels": null, "split_by_inds": false, "training_inds": [ 277, 530, 143, 611, 40, 22, 402, 616, 174, 561, 448, 610, 154, 475, 558, 123, 191, 41, 384, 458, 483, 605, 603, 241, 393, 120, 540, 127, 15, 200, 296, 107, 7, 460, 579, 318, 299, 620, 434, 205, 85, 553, 437, 479, 17, 308, 578, 351, 0, 383, 614, 359, 365, 298, 188, 26, 79, 340, 428, 638, 629, 566, 259, 271, 484, 101, 604, 342, 99, 348, 454, 76, 494, 622, 240, 124, 266, 375, 122, 426, 417, 237, 503, 396, 404, 90, 456, 278, 592, 68, 439, 111, 606, 432, 341, 443, 25, 78, 134, 353, 369, 269, 19, 335, 261, 419, 198, 50, 210, 31, 500, 66, 495, 641, 546, 95, 158, 190, 398, 575, 110, 183, 464, 131, 491, 164, 465, 3, 223, 118, 229, 326, 583, 80, 630, 368, 70, 468, 534, 355, 486, 619, 82, 45, 455, 425, 272, 221, 297, 273, 378, 562, 317, 168, 30, 146, 481, 42, 502, 305, 309, 270, 279, 559, 627, 421, 142, 574, 24, 5, 598, 422, 560, 399, 441, 292, 488, 524, 51, 33, 108, 388, 331, 112, 322, 81, 387, 236, 544, 337, 370, 635, 408, 93, 516, 643, 265, 162, 527, 452, 374, 49, 557, 71, 300, 173, 333, 515, 104, 376, 531, 642, 354, 328, 125, 29, 117, 185, 98, 438, 382, 323, 344, 430, 521, 231, 60, 645, 20, 412, 590, 601, 16, 433, 492, 295, 47, 514, 523, 389, 394, 114, 522, 607, 310, 46, 361, 232, 38, 596, 207, 571, 325, 429, 136, 91, 130, 222, 147, 570, 256, 589, 406, 424, 528, 116, 519, 386, 233, 94, 303, 330, 445, 304, 56, 197, 257, 588, 226, 497, 217, 477, 166, 377, 364, 52, 247, 61, 413, 149, 213, 637, 409, 595, 246, 526, 459, 280, 631, 11, 227, 268, 252, 58, 547, 293, 283, 238, 473, 103, 532, 255, 62, 446, 249, 613, 284, 501, 23, 102, 92, 542, 13, 264, 201, 332, 225, 487, 379, 397, 513, 319, 196, 182, 506, 9, 517, 324, 628, 362, 618, 74, 195, 115, 1, 181, 416, 372, 573, 245, 427, 577, 212, 161, 133, 97, 474, 113, 235, 54, 469, 75, 401, 194, 48, 202, 59, 466, 151, 155, 77, 106, 624, 567, 137, 211, 489, 504, 621, 639, 53, 518, 320, 435, 286, 444, 86, 644, 580, 507, 14, 485, 418, 156, 529, 634, 420, 391, 461, 623, 548, 291, 204, 496, 132, 334, 586, 67, 597, 253, 536, 537, 228, 626, 552, 554, 403, 138, 414, 447, 538, 367, 572, 541, 43, 357, 153, 288, 533, 636, 525, 214, 34, 224, 327, 172, 215, 239, 129, 163, 216, 440, 289, 505, 199, 462, 21, 345, 258, 177, 87, 581, 490, 478, 593, 600, 275, 187, 178, 511, 4, 350, 139, 363, 148, 184, 356, 358, 165, 339, 220, 608, 244, 290, 285, 192, 450, 555, 294, 380, 539, 463, 311, 72, 564, 169, 591, 405, 12, 203, 6, 248, 321, 615, 498, 556, 100, 39, 234, 315, 313, 69, 576, 316, 119, 267, 159, 302, 410, 65, 274, 44, 457, 36, 371, 171, 551, 28, 276, 175, 392, 451, 63, 27, 336, 263, 219, 602, 105, 145, 480, 453, 352, 150, 640, 520, 329, 535, 390, 415, 360, 8, 633, 170, 301, 73, 314, 423, 160, 32, 543, 312, 64, 400, 509, 167, 550, 55, 57, 470, 609, 625, 347, 84, 582, 189, 508, 569, 135, 385, 287, 126, 37, 510, 208, 476, 281, 96, 218, 617, 411 ], "validation_inds": [ 493, 243, 338, 632, 482, 262, 89, 141, 346, 193, 83, 584, 128, 140, 349, 250, 18, 467, 35, 585, 563, 2, 449, 565, 251, 612, 179, 254, 366, 260, 176, 282, 144, 186, 499, 568, 594, 157, 599, 471, 472, 436, 242, 587, 306, 549, 431, 121, 545, 373, 209, 230, 442, 10, 395, 180, 206, 381, 152, 512, 343, 109, 407, 307, 88 ], "test_inds": null, "search_path_hints": [ "", "", "", "", "", "", "" ], "skeletons": [] }, "preprocessing": { "ensure_rgb": false, "ensure_grayscale": false, "imagenet_mode": null, "input_scaling": 1.0, "pad_to_stride": 16, "resize_and_pad_to_target": true, "target_height": 1080, "target_width": 1080 }, "instance_cropping": { "center_on_part": null, "crop_size": 272, "crop_size_detection_padding": 16 } }, "model": { "backbone": { "leap": null, "unet": { "stem_stride": null, "max_stride": 16, "output_stride": 2, "filters": 64, "filters_rate": 2.0, "middle_block": true, "up_interpolate": false, "stacks": 1 }, "hourglass": null, "resnet": null, "pretrained_encoder": null }, "heads": { "single_instance": null, "centroid": null, "centered_instance": null, "multi_instance": null, "multi_class_bottomup": null, "multi_class_topdown": { "confmaps": { "anchor_part": null, "part_names": [ "nose1", "neck1", "earL1", "earR1", "forelegL1", "forelegR1", "tailstart1", "hindlegL1", "hindlegR1", "tail1", "tailend1" ], "sigma": 5.0, "output_stride": 2, "loss_weight": 1.0, "offset_refinement": false }, "class_vectors": { "classes": [ "1", "2" ], "num_fc_layers": 3, "num_fc_units": 64, "global_pool": true, "output_stride": 16, "loss_weight": 1.0 } } }, "base_checkpoint": null }, "optimization": { "preload_data": true, "augmentation_config": { "rotate": false, "rotation_min_angle": -180.0, "rotation_max_angle": 180.0, "translate": false, "translate_min": -5, "translate_max": 5, "scale": false, "scale_min": 0.9, "scale_max": 1.1, "uniform_noise": false, "uniform_noise_min_val": 0.0, "uniform_noise_max_val": 10.0, "gaussian_noise": false, "gaussian_noise_mean": 5.0, "gaussian_noise_stddev": 1.0, "contrast": false, "contrast_min_gamma": 0.5, "contrast_max_gamma": 2.0, "brightness": false, "brightness_min_val": 0.0, "brightness_max_val": 10.0, "random_crop": false, "random_crop_height": 256, "random_crop_width": 256, "random_flip": false, "flip_horizontal": false }, "online_shuffling": true, "shuffle_buffer_size": 128, "prefetch": true, "batch_size": 8, "batches_per_epoch": 200, "min_batches_per_epoch": 200, "val_batches_per_epoch": 10, "min_val_batches_per_epoch": 10, "epochs": 100, "optimizer": "adam", "initial_learning_rate": 0.0001, "learning_rate_schedule": { "reduce_on_plateau": true, "reduction_factor": 0.5, "plateau_min_delta": 1e-06, "plateau_patience": 5, "plateau_cooldown": 3, "min_learning_rate": 1e-08 }, "hard_keypoint_mining": { "online_mining": false, "hard_to_easy_ratio": 2.0, "min_hard_keypoints": 2, "max_hard_keypoints": null, "loss_scale": 5.0 }, "early_stopping": { "stop_training_on_plateau": true, "plateau_min_delta": 1e-06, "plateau_patience": 10 } }, "outputs": { "save_outputs": true, "run_name": null, "run_name_prefix": "LBNcohort1_SIBody231024", "run_name_suffix": null, "runs_folder": "C:/Users/spike/Desktop/sleap/SLEAP Projects\models", "tags": [ "" ], "save_visualizations": true, "delete_viz_images": true, "zip_outputs": false, "log_to_csv": true, "checkpointing": { "initial_model": false, "best_model": true, "every_epoch": false, "latest_model": false, "final_model": false }, "tensorboard": { "write_logs": false, "loss_frequency": "epoch", "architecture_graph": false, "profile_graph": false, "visualizations": true }, "zmq": { "subscribe_to_controller": true, "controller_address": "tcp://127.0.0.1:9000", "controller_polling_timeout": 10, "publish_updates": true, "publish_address": "tcp://127.0.0.1:9001" } }, "name": "", "description": "", "sleap_version": "1.3.3", "filename": "C:/Users/spike/Desktop/sleap/SLEAP Projects\models\LBNcohort1_SIBody231024241023_111429.multi_class_topdown.n=651\training_config.json" }

eberrigan commented 1 month ago

It looks like your skeletons is an empty list. Are you able to open this project in the GUI and take a peek at the skeleton and labels?

pinjuu commented 4 weeks ago

Image

I have labeled 651 frames in the project. Also I have trained this model before and it worked.