Open LiXizhi opened 7 years ago
Shape From Shading, SFS(阴影恢复形状法)
Multi-View Stereo, MVS(立体视觉法)
Find the informations of each pixels' features by SIFT(Scale-invariant feature transform) algorithm.
Link of the codes: SIFT
Paper: D. G. Lowe, "Object recognition from local scale-invariant features," Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, 1999, pp. 1150-1157 vol.2.
Structure from Motion: Using the feature informations from Step 1, match the pixels of different images. Then, estimate the camera parameters and get Sparse reconstruction. Here, we use the Bundler algorithm.
Link of the codes: Bundler
Paper: Goesele, M., Curless, B., & Seitz, S. M. (2006). Multi-View Stereo Revisited. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Vol.2, pp.2402-2409). IEEE Computer Society.
Multi-view Stereo Reconstruction: Based on the results from Step 2, get the Dense Reconstruction by PMVS(patch-based multi-view stereo) algorithm.
Link of the codes: CMVS-PMVS
Paper: Y. Furukawa and J. Ponce, "Accurate, Dense, and Robust Multiview Stereopsis," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 8, pp. 1362-1376, Aug. 2010. doi: 10.1109/TPAMI.2009.161
Remove the noise by Poisson Surface Reconstruction algorithm.
Link of the codes: PoissionSR
Paper: Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. Eurographics Symposium on Geometry Processing (Vol.32, pp.61-70). Eurographics Association.
张颂泽
mentors:
language: NPL / lua