This repository contains the source code for the semantic image segmentation method described in the ICCV 2015 paper: Conditional Random Fields as Recurrent Neural Networks. http://crfasrnn.torr.vision/
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 Not Supported |
+-----------------------------------------------------------------------------+
CUDA devuceQuery:
Device 0: "Tesla K40m"
CUDA Driver Version / Runtime Version 7.5 / 7.5
CUDA Capability Major/Minor version number: 3.5
Total amount of global memory: 11520 MBytes (12079136768 bytes)
(15) Multiprocessors, (192) CUDA Cores/MP: 2880 CUDA Cores
GPU Max Clock rate: 745 MHz (0.75 GHz)
Memory Clock rate: 3004 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 1572864 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 4 / 0
Compute Mode:
The required memory is 3.7Gb. Why do I get this error message? Also, when I resized the image to 500x500, it still takes ~7 s/image. Any suggestions on how to make it faster?
I'm not sure how this is possible. I'm loading a 1280x720 image, here are the specs:
------------------------------------------------------+
| NVIDIA-SMI 352.63 Driver Version: 352.63 |
|-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 NVS 315 Off | 0000:03:00.0 N/A | N/A | | 30% 44C P0 N/A / N/A | 3MiB / 1023MiB | N/A Default | +-------------------------------+----------------------+----------------------+ | 1 Tesla K40m Off | 0000:04:00.0 Off | 0 | | N/A 57C P0 69W / 235W | 55MiB / 11519MiB | 98% Default | +-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+ | Processes: GPU Memory | | GPU PID Type Process name Usage | |=============================================================================| | 0 Not Supported | +-----------------------------------------------------------------------------+
CUDA devuceQuery:
Device 0: "Tesla K40m" CUDA Driver Version / Runtime Version 7.5 / 7.5 CUDA Capability Major/Minor version number: 3.5 Total amount of global memory: 11520 MBytes (12079136768 bytes) (15) Multiprocessors, (192) CUDA Cores/MP: 2880 CUDA Cores GPU Max Clock rate: 745 MHz (0.75 GHz) Memory Clock rate: 3004 Mhz Memory Bus Width: 384-bit L2 Cache Size: 1572864 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Device PCI Domain ID / Bus ID / location ID: 0 / 4 / 0 Compute Mode:
The required memory is 3.7Gb. Why do I get this error message? Also, when I resized the image to 500x500, it still takes ~7 s/image. Any suggestions on how to make it faster?