Open erkintelnyx opened 3 weeks ago
@youkaichao would the recent changes to torch.compile
affect memory usage?
torch.compile
is not enabled by default. we have all the wheels for every commit, and you can bisect to find which one caused the problem, see https://docs.vllm.ai/en/latest/getting_started/installation.html#install-the-latest-code
Your current environment
The output of `python collect_env.py`
```text PyTorch version: 2.6.0.dev20240918+rocm6.2 Is debug build: False CUDA used to build PyTorch: N/A ROCM used to build PyTorch: 6.2.41133-dd7f95766 OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: 18.0.0git (https://github.com/RadeonOpenCompute/llvm-project roc-6.2.0 24292 26466ce804ac523b398608f17388eb6d605a3f09) CMake version: version 3.26.4 Libc version: glibc-2.31 Python version: 3.9.19 (main, May 6 2024, 19:43:03) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.15.0-117-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: AMD Instinct MI100 (gfx908:sramecc+:xnack-) Nvidia driver version: Could not collect cuDNN version: Could not collect HIP runtime version: 6.2.41133 MIOpen runtime version: 3.2.0 Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 48 bits physical, 48 bits virtual CPU(s): 16 On-line CPU(s) list: 0-15 Thread(s) per core: 1 Core(s) per socket: 16 Socket(s): 1 NUMA node(s): 1 Vendor ID: AuthenticAMD CPU family: 25 Model: 1 Model name: AMD EPYC 7713 64-Core Processor Stepping: 1 CPU MHz: 2000.000 BogoMIPS: 4000.00 Virtualization: AMD-V Hypervisor vendor: KVM Virtualization type: full L1d cache: 1 MiB L1i cache: 1 MiB L2 cache: 8 MiB L3 cache: 16 MiB NUMA node0 CPU(s): 0-15 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw perfctr_core invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr wbnoinvd arat npt lbrv nrip_save tsc_scale vmcb_clean flushbyasid pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid fsrm arch_capabilities Versions of relevant libraries: [pip3] mypy==1.8.0 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.26.4 [pip3] optree==0.9.1 [pip3] pytorch-triton-rocm==3.1.0+5fe38ffd73 [pip3] pyzmq==26.2.0 [pip3] torch==2.6.0.dev20240918+rocm6.2 [pip3] torchvision==0.20.0.dev20240918+rocm6.2 [pip3] transformers==4.46.0 [pip3] triton==3.0.0 [conda] No relevant packages ROCM Version: 6.2.41133-dd7f95766 Neuron SDK Version: N/A vLLM Version: 0.6.3.post2.dev116+g55137e8e.d20241029 vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: ============================ ROCm System Management Interface ============================ ================================ Weight between two GPUs ================================= GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 GPU0 0 15 15 15 40 40 40 40 GPU1 15 0 15 15 40 40 40 40 GPU2 15 15 0 15 40 40 40 40 GPU3 15 15 15 0 40 40 40 40 GPU4 40 40 40 40 0 15 15 15 GPU5 40 40 40 40 15 0 15 15 GPU6 40 40 40 40 15 15 0 15 GPU7 40 40 40 40 15 15 15 0 ================================= Hops between two GPUs ================================== GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 GPU0 0 1 1 1 2 2 2 2 GPU1 1 0 1 1 2 2 2 2 GPU2 1 1 0 1 2 2 2 2 GPU3 1 1 1 0 2 2 2 2 GPU4 2 2 2 2 0 1 1 1 GPU5 2 2 2 2 1 0 1 1 GPU6 2 2 2 2 1 1 0 1 GPU7 2 2 2 2 1 1 1 0 =============================== Link Type between two GPUs =============================== GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 GPU0 0 XGMI XGMI XGMI PCIE PCIE PCIE PCIE GPU1 XGMI 0 XGMI XGMI PCIE PCIE PCIE PCIE GPU2 XGMI XGMI 0 XGMI PCIE PCIE PCIE PCIE GPU3 XGMI XGMI XGMI 0 PCIE PCIE PCIE PCIE GPU4 PCIE PCIE PCIE PCIE 0 XGMI XGMI XGMI GPU5 PCIE PCIE PCIE PCIE XGMI 0 XGMI XGMI GPU6 PCIE PCIE PCIE PCIE XGMI XGMI 0 XGMI GPU7 PCIE PCIE PCIE PCIE XGMI XGMI XGMI 0 ======================================= Numa Nodes ======================================= GPU[0] : (Topology) Numa Node: 0 GPU[0] : (Topology) Numa Affinity: -1 GPU[1] : (Topology) Numa Node: 0 GPU[1] : (Topology) Numa Affinity: -1 GPU[2] : (Topology) Numa Node: 0 GPU[2] : (Topology) Numa Affinity: -1 GPU[3] : (Topology) Numa Node: 0 GPU[3] : (Topology) Numa Affinity: -1 GPU[4] : (Topology) Numa Node: 0 GPU[4] : (Topology) Numa Affinity: -1 GPU[5] : (Topology) Numa Node: 0 GPU[5] : (Topology) Numa Affinity: -1 GPU[6] : (Topology) Numa Node: 0 GPU[6] : (Topology) Numa Affinity: -1 GPU[7] : (Topology) Numa Node: 0 GPU[7] : (Topology) Numa Affinity: -1 ================================== End of ROCm SMI Log =================================== ```Model Input Dumps
No response
🐛 Describe the bug
When I try to deploy the model, it throws OOM:
The model was working on a previous commit (08287ef6751e79a89bf4f060f5f9545560a6de12).
Is it because whisper and llama are trying be placed on the same GPU (this also doesn't work for tensor parallel size 4)? If so, where would be the part that can be tweaked for those to be scheduled to separate GPUs (if that is possible)?
Before submitting a new issue...