Closed aaaaxiaoma closed 2 weeks ago
I noticed an issue when trying to Connect to the cBioPortalData database,the error is getMolecularProfiles(cbio, study_id): there is not the function:"getMolecularProfiles"
BiocManager::install("cBioPortalData") BiocManager::install("dplyr") BiocManager::install("ggplot2")
library(cBioPortalData) library(dplyr) library(ggplot2)
cbio <- cBioPortal()
studies <- getStudies(cbio) head(studies) # Preview available studies
studies
study_id <- "brca_tcga" # Example, replace with the CPTAC study ID you need
profiles <- getMolecularProfiles(cbio, study_id)
profile_id <- "brca_tcga_rppa" # Example, replace with the profile ID for protein expression
profile_id
study_id
query <- cBioDataPack( studyId = study_id, use_cache = TRUE )
protein_data <- query$data$RPPA # Replace "RPPA" with the correct dataset for protein expression colnames(protein_data)
rhno1_data <- protein_data %>% filter(Hugo_Symbol == "RHNO1") %>% select(sample_type, cancer_type, expression_value)
results <- rhno1_data %>% group_by(cancer_type) %>% summarize( logFC = mean(expression_value[sample_type == "Tumor"]) - mean(expression_value[sample_type == "Normal"]), p.value = t.test(expression_value[sample_type == "Tumor"], expression_value[sample_type == "Normal"], paired = FALSE)$p.value )
results <- results %>% mutate(significance = case_when( p.value < 0.001 ~ "", p.value < 0.01 ~ "", p.value < 0.05 ~ "", TRUE ~ "" ))
print(results)
ggplot(rhno1_data, aes(x = cancer_type, y = expression_value, fill = sample_type)) + geom_boxplot(position = position_dodge(width = 0.8)) + labs(title = "RHNO1 Protein Expression in Normal and Tumor Tissues", x = "Cancer Type", y = "RHNO1 Expression") + theme_minimal() + scale_fill_manual(values = c("Normal" = "skyblue", "Tumor" = "salmon")) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
write.csv(results, "RHNO1_expression_analysis_results.csv", row.names = FALSE)
Hi @aaaaxiaoma That is not our code. We don't have a getMolecularProfiles function. Use molecularProfiles.
getMolecularProfiles
molecularProfiles
Best, Marcel
I noticed an issue when trying to Connect to the cBioPortalData database,the error is getMolecularProfiles(cbio, study_id): there is not the function:"getMolecularProfiles"
BiocManager::install("cBioPortalData") BiocManager::install("dplyr") BiocManager::install("ggplot2")
Load the libraries
library(cBioPortalData) library(dplyr) library(ggplot2)
Connect to the cBioPortalData database
cbio <- cBioPortal()
List available studies to find CPTAC datasets
studies <- getStudies(cbio) head(studies) # Preview available studies
Download CPTAC data for a specific study
Replace "study_id" with the actual CPTAC study ID you find from
studies
Common examples: "brca_tcga" for breast cancer, "luad_tcga" for lung adenocarcinoma, etc.
study_id <- "brca_tcga" # Example, replace with the CPTAC study ID you need
Get molecular profile data for the study
profiles <- getMolecularProfiles(cbio, study_id)
Identify a protein expression profile (these vary by study)
Replace "profile_id" with the specific profile ID for protein expression data
profile_id <- "brca_tcga_rppa" # Example, replace with the profile ID for protein expression
Download the data for RHNO1 (or your gene of interest)
Replace
profile_id
andstudy_id
with the appropriate IDsquery <- cBioDataPack( studyId = study_id, use_cache = TRUE )
Check if RHNO1 is present in the data
protein_data <- query$data$RPPA # Replace "RPPA" with the correct dataset for protein expression colnames(protein_data)
Filter for RHNO1 and relevant columns (cancer type and sample type)
Assuming the dataset has columns like 'sample_type' (normal/tumor) and 'cancer_type'
rhno1_data <- protein_data %>% filter(Hugo_Symbol == "RHNO1") %>% select(sample_type, cancer_type, expression_value)
Analyze the difference in RHNO1 expression between normal and cancer tissue
results <- rhno1_data %>% group_by(cancer_type) %>% summarize( logFC = mean(expression_value[sample_type == "Tumor"]) - mean(expression_value[sample_type == "Normal"]), p.value = t.test(expression_value[sample_type == "Tumor"], expression_value[sample_type == "Normal"], paired = FALSE)$p.value )
Add significance stars based on p-value thresholds
results <- results %>% mutate(significance = case_when( p.value < 0.001 ~ "", p.value < 0.01 ~ "", p.value < 0.05 ~ "", TRUE ~ "" ))
Print results
print(results)
Visualize the expression data
ggplot(rhno1_data, aes(x = cancer_type, y = expression_value, fill = sample_type)) + geom_boxplot(position = position_dodge(width = 0.8)) + labs(title = "RHNO1 Protein Expression in Normal and Tumor Tissues", x = "Cancer Type", y = "RHNO1 Expression") + theme_minimal() + scale_fill_manual(values = c("Normal" = "skyblue", "Tumor" = "salmon")) + theme(axis.text.x = element_text(angle = 45, hjust = 1))
Save the results to a CSV file
write.csv(results, "RHNO1_expression_analysis_results.csv", row.names = FALSE)