A simple, lightweight, and dependency-free Python library for working with geohashes.
Full docs at pygeohash.mcginniscommawill.com
PyGeoHash is a Python module that provides functions for encoding and decoding geohashes to and from latitude and longitude coordinates, along with utilities for performing calculations and approximations with them.
It was originally based on Leonard Norrgård's geohash module, but now adds more functionality while supporting Python 3, and is optimized for performance.
# Basic installation
pip install pygeohash
# With visualization support
pip install pygeohash[viz]
import pygeohash as pgh
# Encode coordinates to geohash
geohash = pgh.encode(latitude=42.6, longitude=-5.6)
print(geohash) # 'ezs42e44yx96'
# Control precision
short_geohash = pgh.encode(latitude=42.6, longitude=-5.6, precision=5)
print(short_geohash) # 'ezs42'
# Decode geohash to coordinates
lat, lng = pgh.decode(geohash='ezs42')
print(lat, lng) # '42.6', '-5.6'
# Calculate approximate distance between geohashes (in meters)
distance = pgh.geohash_approximate_distance(geohash_1='bcd3u', geohash_2='bc83n')
print(distance) # 625441
# Get adjacent geohash
adjacent = pgh.get_adjacent(geohash='kd3ybyu', direction='right')
print(adjacent) # 'kd3ybyv'
PyGeoHash includes optional visualization capabilities:
# Plot a single geohash
from pygeohash.viz import plot_geohash
import matplotlib.pyplot as plt
fig, ax = plot_geohash("9q8yyk", color="red")
plt.show()
# Plot multiple geohashes
from pygeohash.viz import plot_geohashes
geohashes = ["9q8yyk", "9q8yym", "9q8yyj"]
fig, ax = plot_geohashes(geohashes, colors="viridis")
plt.show()
# Create interactive maps with Folium
from pygeohash.viz import folium_map
m = folium_map(center_geohash="9q8yyk")
m.add_geohash("9q8yyk", color="red")
m.add_geohash_grid(precision=6)
m.save("geohash_map.html")
To generate example visualizations for the documentation, you can use the provided Makefile command:
# Install visualization dependencies
make install-viz
# Generate visualization examples
make viz-examples
This will create static images and interactive maps in the docs/source/_static/images
directory.
PyGeoHash is extensively tested to ensure accuracy in geohash encoding and decoding:
To run the tests:
# Run the standard test suite
make test
# Run tests with coverage
make test-cov
For more insights about PyGeoHash, check out these blog posts:
Contributions are welcome! Feel free to submit a Pull Request.
This project is licensed under the MIT license. See the LICENSE file for details. Prior to version 3.0.0's rewrite the project was licensed under the GPL-3.0 license.
We did a rewrite of the core logic into cpython in v3.0.0 to improve performance and remove the dependency on geohash.py. Here is the performance part:
Name (time in ns) | Min | Max | Mean | StdDev | Median | IQR | Outliers | OPS (Kops/s) | Rounds | Iterations |
---|---|---|---|---|---|---|---|---|---|---|
test_encode_benchmark | 614.0035 (1.0) | 1,170,750.9984 (1.34) | 1,119.5566 (1.0) | 6,011.2433 (1.35) | 714.0043 (1.0) | 664.4987 (7.30) | 370;1371 | 893.2107 (1.0) | 117772 | 1 |
test_approximate_distance_benchmark | 901.9859 (1.47) | 872,125.0051 (1.0) | 1,346.1119 (1.20) | 4,467.1457 (1.0) | 1,031.0032 (1.44) | 90.9786 (1.0) | 463;13144 | 742.8803 (0.83) | 71891 | 1 |
test_decode_benchmark | 2,791.9887 (4.55) | 3,266,092.0115 (3.74) | 4,683.3561 (4.18) | 22,447.8219 (5.03) | 3,102.9922 (4.35) | 2,965.2583 (32.59) | 103;302 | 213.5221 (0.24) | 26769 | 1 |
test_haversine_distance_benchmark | 3,989.0001 (6.50) | 1,066,400.9897 (1.22) | 5,441.2395 (4.86) | 10,068.4850 (2.25) | 4,475.0050 (6.27) | 330.0083 (3.63) | 429;3534 | 183.7817 (0.21) | 28312 | 1 |
Name (time in ns) | Min | Max | Mean | StdDev | Median | IQR | Outliers | OPS (Kops/s) | Rounds | Iterations |
---|---|---|---|---|---|---|---|---|---|---|
test_approximate_distance_benchmark | 903.0045 (1.0) | 2,239,810.0118 (145.76) | 1,242.2962 (1.0) | 8,910.5317 (2.45) | 1,034.0009 (1.0) | 83.0041 (1.0) | 411;12404 | 804,960.9836 (1.0) | 126872 | 1 |
test_numba_point_decode_benchmark | 5,554.9899 (6.15) | 28,678.0123 (1.87) | 11,125.8007 (8.96) | 9,922.0335 (2.73) | 6,597.9839 (6.38) | 8,462.7463 (101.96) | 1;1 | 89,881.1717 (0.11) | 5 | 1 |
test_numba_point_encode_benchmark | 6,829.9996 (7.56) | 15,366.0076 (1.0) | 8,949.4046 (7.20) | 3,633.1020 (1.0) | 7,203.9838 (6.97) | 3,100.7585 (37.36) | 1;1 | 111,739.2773 (0.14) | 5 | 1 |
test_decode_benchmark | 9,094.0157 (10.07) | 564,207.9923 (36.72) | 23,505.3902 (18.92) | 47,847.8575 (13.17) | 19,235.4928 (18.60) | 10,221.4981 (123.14) | 4;9 | 42,543.4333 (0.05) | 156 | 1 |
test_encode_benchmark | 16,131.9913 (17.86) | 6,522,867.0137 (424.50) | 43,962.7989 (35.39) | 204,118.7023 (56.18) | 30,353.0251 (29.35) | 5,316.5204 (64.05) | 12;160 | 22,746.5044 (0.03) | 1081 | 1 |
test_haversine_distance_benchmark | 19,751.9839 (21.87) | 2,229,443.9841 (145.09) | 24,979.8646 (20.11) | 27,057.9632 (7.45) | 21,632.0041 (20.92) | 1,626.0019 (19.59) | 453;3700 | 40,032.2426 (0.05) | 24647 | 1 |
test_numba_vector_decode_benchmark | 887,114.0017 (982.40) | 1,070,945.9893 (69.70) | 974,148.7971 (784.15) | 72,131.5386 (19.85) | 977,645.9774 (945.50) | 111,056.4845 (>1000.0) | 2;0 | 1,026.5372 (0.00) | 5 | 1 |
test_numba_vector_encode_benchmark | 6,603,729.9985 (>1000.0) | 9,492,440.0037 (617.76) | 8,344,232.0058 (>1000.0) | 1,069,465.9606 (294.37) | 8,602,735.0044 (>1000.0) | 1,065,492.2444 (>1000.0) | 2;0 | 119.8433 (0.00) | 5 | 1 |