Install the necessary dependencies:
torch=1.10.2,torchvision=0.11.3 and mmcv-full=1.5.0.
Recommended use of conda virtual environments
conda create -n SiamSeg python==3.8 -y
conda activate SiamSeg
pip command to install torch && torchvision && mmcv-full
pip install torch==1.10.2+cu111 torchvision==0.11.3+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full==1.5.0 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/index.html
pip install kornia matplotlib prettytable timm yapf==0.40.1
for CN user:
pip install torch==1.10.2+cu111 -f https://mirror.sjtu.edu.cn/pytorch-wheels/cu111/?mirror_intel_list
pip install torchvision==0.11.3+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full==1.5.0 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.10.0/index.html
pip install kornia matplotlib prettytable timm yapf==0.40.1
Installation of the reference document refer:
Torch and torchvision versions relationship.
Version relationship of mmcv and torch.
We selected Postsdam, Vaihingen and LoveDA as benchmark datasets and created train, val, test lists for researchers.
The Potsdam dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Potsdam.
The dataset can be requested at the challenge homepage. The '2_Ortho_RGB.zip', '3_Ortho_IRRG.zip' and '5_Labels_all_noBoundary.zip' are required.
The Vaihingen dataset is for urban semantic segmentation used in the 2D Semantic Labeling Contest - Vaihingen.
The dataset can be requested at the challenge homepage. The 'ISPRS_semantic_labeling_Vaihingen.zip' and 'ISPRS_semantic_labeling_Vaihingen_ground_truth_eroded_COMPLETE.zip' are required.
The data could be downloaded from Google Drive here.
Or it can be downloaded from zenodo, you should run the following command:
cd /{your_project_base_path}/SiamSeg/data/LoveDA
# Download Train.zip
wget https://zenodo.org/record/5706578/files/Train.zip
# Download Val.zip
wget https://zenodo.org/record/5706578/files/Val.zip
# Download Test.zip
wget https://zenodo.org/record/5706578/files/Test.zip
Place the downloaded file in the corresponding path The format is as follows
SiamSeg/
βββ data/
β βββ LoveDA/
β β βββ Test.zip
β β βββ Train.zip
β β βββ Val.zip
βββ βββ Potsdam_IRRG_DA/
β β βββ 3_Ortho_IRRG.zip
β β βββ 5_Labels_all_noBoundary.zip
βββ βββ Potsdam_RGB_DA/
β β βββ 2_Ortho_RGB.zip
β β βββ 5_Labels_all_noBoundary.zip
βββ βββ Potsdam_IRRG_DA/
β β βββ ISPRS_semantic_labeling_Vaihingen.zip
β β βββ ISPRS_semantic_labeling_Vaihingen_ground_truth_eroded_COMPLETE.zip
python tools/convert_datasets/potsdam.py data/Potsdam_IRRG/ --clip_size 512 --stride_size 512
python tools/convert_datasets/potsdam.py data/Potsdam_RGB/ --clip_size 512 --stride_size 512
python tools/convert_datasets/vaihingen.py data/Vaihingen_IRRG/ --clip_size 512 --stride_size 256
cd data/LoveDA
unzip Train.zip, Val.zip, Test.zip
mit_b5.pth :
We provide a script mit2mmseg.py
in the tools directory to convert the key of models from the official repo to MMSegmentation style.
python tools/model_converters/mit2mmseg.py ${PRETRAIN_PATH} ./pretrained
Or you can download it from google drive.
The structure of the file is as follows
SiamSeg/
βββ pretrained/
β βββ mit_b5.pth (needed)
β βββ ohter.pth (option)
tips
When using distributed training scripts under linux, you need to set the permissions of the training scripts due to the file permissions.
cd SiamSeg chmod 777 ./tools/dist_train.sh chmod 777 ./tools/dist_test.sh
# Potsdam IRRG to Vaihingen IRRG
# CUDA_VISIBLE_DEVICES Visible GPU ids are 0-3 Total four GPU processors
# PORT Sets the communication port of the master for distributed training.
# The last 4 indicates the total number of GPUs used
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=10985 \
./tools/dist_train.sh \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_PotsdamIRRG_2_VaihingenIRRG.py 4
# Potsdam RGB to Vaihingen IRRG
# CUDA_VISIBLE_DEVICES Visible GPU ids are 0-3 Total four GPU processors
# PORT Sets the communication port of the master for distributed training.
# The last 4 indicates the total number of GPUs used
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=10985 \
./tools/dist_train.sh \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_PotsdamRGB_2_VaihingenIRRG.py 4
# Potsdam IRRG to Vaihingen IRRG
# CUDA_VISIBLE_DEVICES Visible GPU ids are 0-3 Total four GPU processors
# PORT Sets the communication port of the master for distributed training.
# The last 4 indicates the total number of GPUs used
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=10985 \
./tools/dist_train.sh \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_VaihingenIRRG_2_PotsdamIRRG.py 4
# Potsdam IRRG to Vaihingen IRRG
# CUDA_VISIBLE_DEVICES Visible GPU ids are 0-3 Total four GPU processors
# PORT Sets the communication port of the master for distributed training.
# The last 4 indicates the total number of GPUs used
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=10985 \
./tools/dist_train.sh \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_VaihingenIRRG_2_PotsdamRGB.py 4
# Potsdam IRRG to Vaihingen IRRG
# CUDA_VISIBLE_DEVICES Visible GPU ids are 0-3 Total four GPU processors
# PORT Sets the communication port of the master for distributed training.
# The last 4 indicates the total number of GPUs used
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=10985 \
./tools/dist_train.sh \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_Rural_2_Urban.py 4
# for dist test
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=10985 \
sh tools/dist_test.sh \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_PotsdamRGB_2_VaihingenIRRG.py \
{beast_model_path} 4 --eval mIoU mFscore
# for predict label save
# launcher must set to 'none'
# opacity between 0 and 1
PYTHONPATH=$(pwd):$PYTHONPATH CUDA_VISIBLE_DEVICES=0 \
python tools/test.py \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_PotsdamRGB_2_VaihingenIRRG.py \
{beast_model_path} --eval mIoU mFscore --launcher none --opacity 1.0
# for dist test
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=10985 \
sh tools/dist_test.sh \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_PotsdamRGB_2_VaihingenIRRG.py \
{beast_model_path} 4 --eval mIoU mFscore
# for predict label save
# launcher must set to 'none'
# opacity between 0 and 1
PYTHONPATH=$(pwd):$PYTHONPATH CUDA_VISIBLE_DEVICES=0 \
python tools/test.py \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_PotsdamRGB_2_VaihingenIRRG.py \
{beast_model_path} --eval mIoU mFscore --launcher none --opacity 1.0
# for dist test
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=10985 \
sh tools/dist_test.sh \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_VaihingenIRRG_2_PotsdamIRRG.py \
{beast_model_path} 4 --eval mIoU mFscore
# for predict label save
# launcher must set to 'none'
# opacity between 0 and 1
PYTHONPATH=$(pwd):$PYTHONPATH CUDA_VISIBLE_DEVICES=0 \
python tools/test.py \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_VaihingenIRRG_2_PotsdamIRRG.py \
{beast_model_path} --eval mIoU mFscore --launcher none --opacity 1.0
# for dist test
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=10985 \
sh tools/dist_test.sh \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_VaihingenIRRG_2_PotsdamRGB.py \
{beast_model_path} 4 --eval mIoU mFscore
# for predict label save
# for predict label save
# launcher must set to 'none'
# opacity between 0 and 1
PYTHONPATH=$(pwd):$PYTHONPATH CUDA_VISIBLE_DEVICES=0 \
python tools/test.py \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_VaihingenIRRG_2_PotsdamRGB.py \
{beast_model_path} --eval mIoU mFscore --launcher none --opacity 1.0
# for dist test
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=10985 \
sh tools/dist_test.sh \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_Rural_2_Urban.py \
{beast_model_path} 4 --eval mIoU mFscore
# for predict label save
# launcher must set to 'none'
# opacity between 0 and 1
PYTHONPATH=$(pwd):$PYTHONPATH CUDA_VISIBLE_DEVICES=0 \
python tools/test.py \
configs/SiamSeg/siamseg_daformer_sepaspp_mitb5_512x512_40k_Rural_2_Urban.py \
{beast_model_path} --eval mIoU mFscore --launcher none --opacity 1.0
Many thanks to their excellent works