Open aiquanpeng opened 1 year ago
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's attention_mask
to obtain reliable results.
Setting pad_token_id
to eos_token_id
:151643 for open-end generation.
A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set padding_side='left'
when initializing the tokenizer.
遇到了同样的问题,请问解决了么
结果全是乱的,答案都不对,坐等一个解决方案
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's
attention_mask
to obtain reliable results. Settingpad_token_id
toeos_token_id
:151643 for open-end generation. A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please setpadding_side='left'
when initializing the tokenizer.
这个warning可以不用理会,应该不影响生成。我用这个项目训练的模型,生成结果看起来好像还行
same warning: The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's attention_mask to obtain reliable results. Setting pad_token_id to eos_token_id:151643 for open-end generation. A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please set padding_side='left' when initializing the tokenizer.
The attention mask and the pad token id were not set. As a consequence, you may observe unexpected behavior. Please pass your input's
attention_mask
to obtain reliable results. Settingpad_token_id
toeos_token_id
:151643 for open-end generation. A decoder-only architecture is being used, but right-padding was detected! For correct generation results, please setpadding_side='left'
when initializing the tokenizer.这个warning可以不用理会,应该不影响生成。我用这个项目训练的模型,生成结果看起来好像还行
这是我的结果,是乱的
训练轮数太大,数据量太少导致,降低训练轮数
训练轮数太大,数据量太少导致,降低训练轮数
巡礼那轮数设置的1,使用的数据量确实太少,示例中的那些,这个会导致大模型混乱么?
遇到了同样的问题, 使用Firefly/script/chat/single_chat.py 脚本 加载最原始的Qwen-7b-chat模型输出也是乱的,
可以参考使用一下下面这段代码, 亲测有效
def main():
model_name = 'Qwen-7B-Chat'
# model_name = 'YeungNLP/firefly-baichuan-7b'
# model_name = 'YeungNLP/firefly-ziya-13b'
# model_name = 'YeungNLP/firefly-bloom-7b1'
# model_name = 'YeungNLP/firefly-baichuan-7b'
# model_name = 'YeungNLP/firefly-baichuan-13b'
# model_name = 'YeungNLP/firefly-bloom-7b1'
# model_name = 'YeungNLP/firefly-llama-30b'
max_new_tokens = 500
top_p = 0.9
temperature = 0.35
repetition_penalty = 1.0
device = 'cuda'
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
device_map='auto'
).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
# llama不支持fast
use_fast=False if model.config.model_type == 'llama' else True
)
# QWenTokenizer比较特殊,pad_token_id、bos_token_id、eos_token_id均为None。eod_id对应的token为<|endoftext|>
if tokenizer.__class__.__name__ == 'QWenTokenizer':
tokenizer.pad_token_id = tokenizer.eod_id
tokenizer.bos_token_id = tokenizer.eod_id
tokenizer.eos_token_id = tokenizer.eod_id
text = input('User:')
while True:
text = text.strip()
# chatglm使用官方的数据组织格式
if model.config.model_type == 'chatglm':
text = '[Round 1]\n\n问:{}\n\n答:'.format(text)
input_ids = tokenizer(text, return_tensors="pt", add_special_tokens=False).input_ids.to(device)
# 为了兼容qwen-7b,因为其对eos_token进行tokenize,无法得到对应的eos_token_id
else:
im_start_tokens = [tokenizer.im_start_id]
im_end_tokens = [tokenizer.im_end_id]
nl_tokens = tokenizer.encode("\n")
def _tokenize_str(role, content):
return f"{role}\n{content}", tokenizer.encode(
role, allowed_special=set()
) + nl_tokens + tokenizer.encode(content, allowed_special=set())
system_text, system_tokens_part = _tokenize_str("system", "")
system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
context_tokens = []
context_tokens = system_tokens + context_tokens
context_tokens += (
nl_tokens
+ im_start_tokens
+ _tokenize_str("user", text)[1]
+ im_end_tokens
+ nl_tokens
+ im_start_tokens
+ tokenizer.encode("assistant")
+ nl_tokens
)
input_ids = torch.tensor([context_tokens]).to(device)
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids, max_new_tokens=max_new_tokens, do_sample=True,
top_p=top_p, temperature=temperature, repetition_penalty=repetition_penalty,
eos_token_id=tokenizer.eos_token_id
)
outputs = outputs.tolist()[0][len(input_ids[0]):]
response = tokenizer.decode(outputs)
response = response.strip().replace(tokenizer.eos_token, "").strip()
print("Firefly:{}".format(response))
text = input('User:')
if __name__ == '__main__':
main()
`
遇到了同样的问题, 使用Firefly/script/chat/single_chat.py 脚本 加载最原始的Qwen-7b-chat模型输出也是乱的,
因为每个项目或者模型都有其自己的数据组织格式,需要使用官方的推理脚本。firefly里面的推理代码,只支持使用firefly项目训练的模型。
遇到了同样的问题, 使用Firefly/script/chat/single_chat.py 脚本 加载最原始的Qwen-7b-chat模型输出也是乱的,
因为每个项目或者模型都有其自己的数据组织格式,需要使用官方的推理脚本。firefly里面的推理代码,只支持使用firefly项目训练的模型。
感谢解答,谢谢
还是么用呢 这个是不是灾难性遗忘
还是么用呢 这个是不是灾难性遗忘
不是,灾难性遗忘是没办法回答源域知识,输出的内容都是SFT阶段的语料回答,而不是胡乱回答;上面的问题看起来更像是推理阶段对特殊符eos, pos解析出错导致的,就像前面提到的推理代码中数据组织格式不一致导致的,需要自己debug或者使用源项目推理代码