Search part-specific Cell-based Neural Fabrics (CNFs) with the guide of the prior knowledge of human body structure.
This repository is our PyTorch implementation of the paper Pose Neural Fabrics Search (PNFS) (arXiv 1909.07068).
Neural architecture search space at macro and micro level:
Install PyTorch
(>=1.0.0) and the packages mentioned in requirements.txt
by pip install -r requirements.txt
.
We follow the steps of this repository for preparing MPII
and COCO
dataset, please see the https://github.com/microsoft/human-pose-estimation.pytorch#data-preparation.
o
directory to preserve each experiment's outputmkdir o
python train.py \
--cfg configs/example.yaml \
--exp_name o/default_exp/ \
--gpu 0,1
other optional commands for training
--batchsize 32
--param_flop // report parameters and FLOPs
--search search_method_name // options: ['None','random','sync','first_order_gradient','second_order_gradient']
--debug // visualize the input data
--visualize // visualize the predicted heatmaps for an image (per 5 epcohes in training)
--show_arch_value // print the parameters of architecture in the training process
sh distributed.sh
nproc_per_node
means how many gpus are used.
python test.py \
--cfg configs/mobilenet_v2_CNFx3_coco_384x288.yaml \
--exp_name o/mobile_cnf3_coco/ \
--gpu 0,1 \
--test_model /path_to/mobilenet-v2_nfx3_384x288_coco_ckpt.tar \
--flip_test
other optional commands for testing
--visualize // visualize the predicted heatmaps
--param_flop
---margin 1.25 // [1.0,1.5] margin between bbox border and input size when testing
--flip_test // horizontal flip test
--use_dt // use the detection results of COCO val set or test-dev set
Arch=Prune(Arch, prune_cells=True, prune_operations=True)
to prune the useless cells and operations according to the architecture parameters. It doesn't sacrifice the precision and doesn't need to re-train. A new search result is obtained with 72.3 AP performance with 15.9M for COCO test-dev2017.
All of the detailed settings of the model are recorded in the configs/*.yaml
.
A snippet example of the *.yaml
for the hyperparameters of subnetworks :
subnetwork_config:
dataset_name: 'coco'
parts_num : 3
cell_config:
vector_in_pixel : True
vector_dim: 8
convolution_mode: '2D'
search_alpha: true
search_beta: true
operators: ["skip_connect", "Sep_Conv_3x3","Atr_Conv_3x3","max_pool_3x3"] #
depth: 7
cut_layers_num: 4 # first several layers
size_types: [4,8,16,32] # scales is [1/4, 1/8, 1/16, 1/32]
hidden_states_num: 1
factor: 16
input_nodes_num: 1 # default
BackBone + Head | Params/FLOPs | Result | Download |
---|---|---|---|
MobileNet-V2 + CNFx3 | 6.1M/4.0G | 67.4-COCO Test-dev | Google Drive |
HRNet-W32-stem~stage3 + CNFx5 | 16.4M/9.4G | 90.1-MPII Val-set | Google Drive |
HRNet-W32-stem~stage3 + CNFx5 | 15.9M/14.8G | 72.3-COCO Test-dev | Google Drive |
See the paper (newly) or configs for more details.
The body keypoints assignment for different parts is defined in src/network_factory/body_parts.py
We provide two types of convolutional mode Conv2d
and Conv3d
to show how to construct the vector representation (5D-Tensor
) of keypoint in src/network_factory/subnetwork.py
. We use the Conv2d
mode (reshape 5D-Tensor
to 4D-Tensor
) by default.
More potential cutomized computing units can be defined as candidate operations in src/architecture/operators.py
.
If it helps your research, please consider citing:
@article{yang2019pose,
title={Pose Neural Fabrics Search},
author={Yang, Sen and Yang, Wankou and Cui, Zhen},
journal={arXiv preprint arXiv:1909.07068},
year={2019}
}