Closed RTae closed 3 years ago
I adapted some code to work for this one. Just modify the last line for the input image and the output path and it should work.
# CODE WAS MODIFIED FROM https://github.com/leoxiaobin/deep-high-resolution-net.pytorch import torch import cv2 import torchvision.transforms as transforms import numpy as np import math import torchvision COCO_KEYPOINT_INDEXES = { 0: 'nose', 1: 'left_eye', 2: 'right_eye', 3: 'left_ear', 4: 'right_ear', 5: 'left_shoulder', 6: 'right_shoulder', 7: 'left_elbow', 8: 'right_elbow', 9: 'left_wrist', 10: 'right_wrist', 11: 'left_hip', 12: 'right_hip', 13: 'left_knee', 14: 'right_knee', 15: 'left_ankle', 16: 'right_ankle' } COCO_INSTANCE_CATEGORY_NAMES = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] def get_max_preds(batch_heatmaps): ''' get predictions from score maps heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) ''' assert isinstance(batch_heatmaps, np.ndarray), \ 'batch_heatmaps should be numpy.ndarray' assert batch_heatmaps.ndim == 4, 'batch_images should be 4-ndim' batch_size = batch_heatmaps.shape[0] num_joints = batch_heatmaps.shape[1] width = batch_heatmaps.shape[3] heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1)) idx = np.argmax(heatmaps_reshaped, 2) maxvals = np.amax(heatmaps_reshaped, 2) maxvals = maxvals.reshape((batch_size, num_joints, 1)) idx = idx.reshape((batch_size, num_joints, 1)) preds = np.tile(idx, (1, 1, 2)).astype(np.float32) preds[:, :, 0] = (preds[:, :, 0]) % width preds[:, :, 1] = np.floor((preds[:, :, 1]) / width) pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2)) pred_mask = pred_mask.astype(np.float32) preds *= pred_mask return preds, maxvals def get_dir(src_point, rot_rad): sn, cs = np.sin(rot_rad), np.cos(rot_rad) src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs return src_result def get_3rd_point(a, b): direct = a - b return b + np.array([-direct[1], direct[0]], dtype=np.float32) def get_affine_transform( center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0 ): if not isinstance(scale, np.ndarray) and not isinstance(scale, list): print(scale) scale = np.array([scale, scale]) scale_tmp = scale * 200.0 src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = get_dir([0, src_w * -0.5], rot_rad) dst_dir = np.array([0, dst_w * -0.5], np.float32) src = np.zeros((3, 2), dtype=np.float32) dst = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir src[2:, :] = get_3rd_point(src[0, :], src[1, :]) dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans def affine_transform(pt, t): new_pt = np.array([pt[0], pt[1], 1.]).T new_pt = np.dot(t, new_pt) return new_pt[:2] def transform_preds(coords, center, scale, output_size): target_coords = np.zeros(coords.shape) trans = get_affine_transform(center, scale, 0, output_size, inv=1) for p in range(coords.shape[0]): target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans) return target_coords def get_final_preds(batch_heatmaps, center, scale): coords, maxvals = get_max_preds(batch_heatmaps) heatmap_height = batch_heatmaps.shape[2] heatmap_width = batch_heatmaps.shape[3] # post-processing if True: for n in range(coords.shape[0]): for p in range(coords.shape[1]): hm = batch_heatmaps[n][p] px = int(math.floor(coords[n][p][0] + 0.5)) py = int(math.floor(coords[n][p][1] + 0.5)) if 1 < px < heatmap_width - 1 and 1 < py < heatmap_height - 1: diff = np.array( [ hm[py][px + 1] - hm[py][px - 1], hm[py + 1][px] - hm[py - 1][px] ] ) coords[n][p] += np.sign(diff) * .25 preds = coords.copy() # Transform back for i in range(coords.shape[0]): preds[i] = transform_preds( coords[i], center[i], scale[i], [heatmap_width, heatmap_height] ) return preds, maxvals SKELETON = [ [1, 3], [1, 0], [2, 4], [2, 0], [0, 5], [0, 6], [5, 7], [7, 9], [6, 8], [8, 10], [5, 11], [6, 12], [11, 12], [11, 13], [13, 15], [12, 14], [14, 16] ] CocoColors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]] NUM_KPTS = 17 def get_person_detection_boxes(model, img, threshold=0.5): pred = model(img) pred_classes = [COCO_INSTANCE_CATEGORY_NAMES[i] for i in list(pred[0]['labels'].cpu().numpy())] # Get the Prediction Score pred_boxes = [[(i[0], i[1]), (i[2], i[3])] for i in list(pred[0]['boxes'].detach().cpu().numpy())] # Bounding boxes pred_score = list(pred[0]['scores'].detach().cpu().numpy()) if not pred_score or max(pred_score) < threshold: return [] # Get list of index with score greater than threshold pred_t = [pred_score.index(x) for x in pred_score if x > threshold][-1] pred_boxes = pred_boxes[:pred_t + 1] pred_classes = pred_classes[:pred_t + 1] person_boxes = [] for idx, box in enumerate(pred_boxes): if pred_classes[idx] == 'person': person_boxes.append(box) return person_boxes def draw_pose(keypoints, img): """draw the keypoints and the skeletons. :params keypoints: the shape should be equal to [17,2] :params img: """ assert keypoints.shape == (NUM_KPTS, 2) for i in range(len(SKELETON)): kpt_a, kpt_b = SKELETON[i][0], SKELETON[i][1] x_a, y_a = keypoints[kpt_a][0], keypoints[kpt_a][1] x_b, y_b = keypoints[kpt_b][0], keypoints[kpt_b][1] cv2.circle(img, (int(x_a), int(y_a)), 6, CocoColors[i], -1) cv2.circle(img, (int(x_b), int(y_b)), 6, CocoColors[i], -1) cv2.line(img, (int(x_a), int(y_a)), (int(x_b), int(y_b)), CocoColors[i], 2) def box_to_center_scale(box, model_image_width, model_image_height): """convert a box to center,scale information required for pose transformation Parameters ---------- box : list of tuple list of length 2 with two tuples of floats representing bottom left and top right corner of a box model_image_width : int model_image_height : int Returns ------- (numpy array, numpy array) Two numpy arrays, coordinates for the center of the box and the scale of the box """ center = np.zeros((2), dtype=np.float32) bottom_left_corner = box[0] top_right_corner = box[1] box_width = top_right_corner[0] - bottom_left_corner[0] box_height = top_right_corner[1] - bottom_left_corner[1] bottom_left_x = bottom_left_corner[0] bottom_left_y = bottom_left_corner[1] center[0] = bottom_left_x + box_width * 0.5 center[1] = bottom_left_y + box_height * 0.5 aspect_ratio = model_image_width * 1.0 / model_image_height pixel_std = 200 if box_width > aspect_ratio * box_height: box_height = box_width * 1.0 / aspect_ratio elif box_width < aspect_ratio * box_height: box_width = box_height * aspect_ratio scale = np.array( [box_width * 1.0 / pixel_std, box_height * 1.0 / pixel_std], dtype=np.float32) if center[0] != -1: scale = scale * 1.25 return center, scale def get_pose_estimation_prediction(pose_model, image, center, scale): rotation = 0 img_size = (256, 192) # pose estimation transformation trans = get_affine_transform(center, scale, rotation, img_size) model_input = cv2.warpAffine( image, trans, (int(img_size[0]), int(img_size[1])), flags=cv2.INTER_LINEAR) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) # pose estimation inference model_input = transform(model_input).unsqueeze(0) # switch to evaluate mode pose_model.eval() with torch.no_grad(): # compute output heatmap output = pose_model(model_input) preds, _ = get_final_preds( output.clone().cpu().numpy(), np.asarray([center]), np.asarray([scale])) return preds def main(img_path, save_path): CTX = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') box_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) box_model.to(CTX) box_model.eval() model = torch.hub.load('yangsenius/TransPose:main', 'tph_a4_256x192', pretrained=True) image_bgr = cv2.imread(img_path) image_rgb = image_bgr[:, :, [2, 1, 0]] img_dimensions = (256, 192) input = [] img = cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB) img_tensor = torch.from_numpy(img / 255.).permute(2, 0, 1).float().to(CTX) input.append(img_tensor) pred_boxes = get_person_detection_boxes(box_model, input, threshold=0.9) if len(pred_boxes) >= 1: for box in pred_boxes: center, scale = box_to_center_scale(box, img_dimensions[0], img_dimensions[1]) image_pose = image_rgb.copy() pose_preds = get_pose_estimation_prediction(model, image_pose, center, scale) if len(pose_preds) >= 1: for kpt in pose_preds: draw_pose(kpt, image_bgr) # draw the poses cv2.imwrite(save_path, image_bgr) print('the result image has been saved as {}'.format(save_path)) if __name__ == "__main__": image_path = 'Ag-pXiLrd48_014430.jpg' save_path = 'output2501717.jpg' main(image_path, save_path)
@Neriysp perfect!! Thx
Thx! @Neriysp.
Recently, I also provided a demo for visualizing the attention areas of keypoints in this repo, @RTae
I adapted some code to work for this one. Just modify the last line for the input image and the output path and it should work.