ydhongHIT / DDRNet

The official implementation of "Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes"
MIT License
415 stars 53 forks source link

Multiple questions about DDRNet23 Slim Model #12

Closed dasmehdix closed 3 years ago

dasmehdix commented 3 years ago

I build the "DDRNet23 Slim" model that you provided. I have images with shape of 1024 H x 1024 W x 3 C. There are 8 different classes in my dataset. When I check model summary with summary(net.cuda(),(3,1024,1024)), I get model summary like:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 32, 512, 512]             896
       BatchNorm2d-2         [-1, 32, 512, 512]              64
              ReLU-3         [-1, 32, 512, 512]               0
            Conv2d-4         [-1, 32, 256, 256]           9,248
       BatchNorm2d-5         [-1, 32, 256, 256]              64
              ReLU-6         [-1, 32, 256, 256]               0
            Conv2d-7         [-1, 32, 256, 256]           9,216
       BatchNorm2d-8         [-1, 32, 256, 256]              64
              ReLU-9         [-1, 32, 256, 256]               0
           Conv2d-10         [-1, 32, 256, 256]           9,216
      BatchNorm2d-11         [-1, 32, 256, 256]              64
             ReLU-12         [-1, 32, 256, 256]               0
       BasicBlock-13         [-1, 32, 256, 256]               0
           Conv2d-14         [-1, 32, 256, 256]           9,216
      BatchNorm2d-15         [-1, 32, 256, 256]              64
             ReLU-16         [-1, 32, 256, 256]               0
           Conv2d-17         [-1, 32, 256, 256]           9,216
      BatchNorm2d-18         [-1, 32, 256, 256]              64
       BasicBlock-19         [-1, 32, 256, 256]               0
             ReLU-20         [-1, 32, 256, 256]               0
           Conv2d-21         [-1, 64, 128, 128]          18,432
      BatchNorm2d-22         [-1, 64, 128, 128]             128
             ReLU-23         [-1, 64, 128, 128]               0
           Conv2d-24         [-1, 64, 128, 128]          36,864
      BatchNorm2d-25         [-1, 64, 128, 128]             128
           Conv2d-26         [-1, 64, 128, 128]           2,048
      BatchNorm2d-27         [-1, 64, 128, 128]             128
             ReLU-28         [-1, 64, 128, 128]               0
       BasicBlock-29         [-1, 64, 128, 128]               0
           Conv2d-30         [-1, 64, 128, 128]          36,864
      BatchNorm2d-31         [-1, 64, 128, 128]             128
             ReLU-32         [-1, 64, 128, 128]               0
           Conv2d-33         [-1, 64, 128, 128]          36,864
      BatchNorm2d-34         [-1, 64, 128, 128]             128
       BasicBlock-35         [-1, 64, 128, 128]               0
             ReLU-36         [-1, 64, 128, 128]               0
           Conv2d-37          [-1, 128, 64, 64]          73,728
      BatchNorm2d-38          [-1, 128, 64, 64]             256
             ReLU-39          [-1, 128, 64, 64]               0
           Conv2d-40          [-1, 128, 64, 64]         147,456
      BatchNorm2d-41          [-1, 128, 64, 64]             256
           Conv2d-42          [-1, 128, 64, 64]           8,192
      BatchNorm2d-43          [-1, 128, 64, 64]             256
             ReLU-44          [-1, 128, 64, 64]               0
       BasicBlock-45          [-1, 128, 64, 64]               0
           Conv2d-46          [-1, 128, 64, 64]         147,456
      BatchNorm2d-47          [-1, 128, 64, 64]             256
             ReLU-48          [-1, 128, 64, 64]               0
           Conv2d-49          [-1, 128, 64, 64]         147,456
      BatchNorm2d-50          [-1, 128, 64, 64]             256
       BasicBlock-51          [-1, 128, 64, 64]               0
             ReLU-52         [-1, 64, 128, 128]               0
           Conv2d-53         [-1, 64, 128, 128]          36,864
      BatchNorm2d-54         [-1, 64, 128, 128]             128
             ReLU-55         [-1, 64, 128, 128]               0
           Conv2d-56         [-1, 64, 128, 128]          36,864
      BatchNorm2d-57         [-1, 64, 128, 128]             128
             ReLU-58         [-1, 64, 128, 128]               0
       BasicBlock-59         [-1, 64, 128, 128]               0
           Conv2d-60         [-1, 64, 128, 128]          36,864
      BatchNorm2d-61         [-1, 64, 128, 128]             128
             ReLU-62         [-1, 64, 128, 128]               0
           Conv2d-63         [-1, 64, 128, 128]          36,864
      BatchNorm2d-64         [-1, 64, 128, 128]             128
       BasicBlock-65         [-1, 64, 128, 128]               0
             ReLU-66         [-1, 64, 128, 128]               0
           Conv2d-67          [-1, 128, 64, 64]          73,728
      BatchNorm2d-68          [-1, 128, 64, 64]             256
             ReLU-69          [-1, 128, 64, 64]               0
           Conv2d-70           [-1, 64, 64, 64]           8,192
      BatchNorm2d-71           [-1, 64, 64, 64]             128
             ReLU-72          [-1, 128, 64, 64]               0
           Conv2d-73          [-1, 256, 32, 32]         294,912
      BatchNorm2d-74          [-1, 256, 32, 32]             512
             ReLU-75          [-1, 256, 32, 32]               0
           Conv2d-76          [-1, 256, 32, 32]         589,824
      BatchNorm2d-77          [-1, 256, 32, 32]             512
           Conv2d-78          [-1, 256, 32, 32]          32,768
      BatchNorm2d-79          [-1, 256, 32, 32]             512
             ReLU-80          [-1, 256, 32, 32]               0
       BasicBlock-81          [-1, 256, 32, 32]               0
           Conv2d-82          [-1, 256, 32, 32]         589,824
      BatchNorm2d-83          [-1, 256, 32, 32]             512
             ReLU-84          [-1, 256, 32, 32]               0
           Conv2d-85          [-1, 256, 32, 32]         589,824
      BatchNorm2d-86          [-1, 256, 32, 32]             512
       BasicBlock-87          [-1, 256, 32, 32]               0
             ReLU-88         [-1, 64, 128, 128]               0
           Conv2d-89         [-1, 64, 128, 128]          36,864
      BatchNorm2d-90         [-1, 64, 128, 128]             128
             ReLU-91         [-1, 64, 128, 128]               0
           Conv2d-92         [-1, 64, 128, 128]          36,864
      BatchNorm2d-93         [-1, 64, 128, 128]             128
             ReLU-94         [-1, 64, 128, 128]               0
       BasicBlock-95         [-1, 64, 128, 128]               0
           Conv2d-96         [-1, 64, 128, 128]          36,864
      BatchNorm2d-97         [-1, 64, 128, 128]             128
             ReLU-98         [-1, 64, 128, 128]               0
           Conv2d-99         [-1, 64, 128, 128]          36,864
     BatchNorm2d-100         [-1, 64, 128, 128]             128
      BasicBlock-101         [-1, 64, 128, 128]               0
            ReLU-102         [-1, 64, 128, 128]               0
          Conv2d-103          [-1, 128, 64, 64]          73,728
     BatchNorm2d-104          [-1, 128, 64, 64]             256
            ReLU-105          [-1, 128, 64, 64]               0
          Conv2d-106          [-1, 256, 32, 32]         294,912
     BatchNorm2d-107          [-1, 256, 32, 32]             512
            ReLU-108          [-1, 256, 32, 32]               0
          Conv2d-109           [-1, 64, 32, 32]          16,384
     BatchNorm2d-110           [-1, 64, 32, 32]             128
            ReLU-111         [-1, 64, 128, 128]               0
          Conv2d-112         [-1, 64, 128, 128]           4,096
     BatchNorm2d-113         [-1, 64, 128, 128]             128
            ReLU-114         [-1, 64, 128, 128]               0
          Conv2d-115         [-1, 64, 128, 128]          36,864
     BatchNorm2d-116         [-1, 64, 128, 128]             128
            ReLU-117         [-1, 64, 128, 128]               0
          Conv2d-118        [-1, 128, 128, 128]           8,192
     BatchNorm2d-119        [-1, 128, 128, 128]             256
          Conv2d-120        [-1, 128, 128, 128]           8,192
     BatchNorm2d-121        [-1, 128, 128, 128]             256
      Bottleneck-122        [-1, 128, 128, 128]               0
            ReLU-123          [-1, 256, 32, 32]               0
          Conv2d-124          [-1, 256, 32, 32]          65,536
     BatchNorm2d-125          [-1, 256, 32, 32]             512
            ReLU-126          [-1, 256, 32, 32]               0
          Conv2d-127          [-1, 256, 16, 16]         589,824
     BatchNorm2d-128          [-1, 256, 16, 16]             512
            ReLU-129          [-1, 256, 16, 16]               0
          Conv2d-130          [-1, 512, 16, 16]         131,072
     BatchNorm2d-131          [-1, 512, 16, 16]           1,024
          Conv2d-132          [-1, 512, 16, 16]         131,072
     BatchNorm2d-133          [-1, 512, 16, 16]           1,024
      Bottleneck-134          [-1, 512, 16, 16]               0
     BatchNorm2d-135          [-1, 512, 16, 16]           1,024
            ReLU-136          [-1, 512, 16, 16]               0
          Conv2d-137          [-1, 128, 16, 16]          65,536
       AvgPool2d-138            [-1, 512, 8, 8]               0
     BatchNorm2d-139            [-1, 512, 8, 8]           1,024
            ReLU-140            [-1, 512, 8, 8]               0
          Conv2d-141            [-1, 128, 8, 8]          65,536
     BatchNorm2d-142          [-1, 128, 16, 16]             256
            ReLU-143          [-1, 128, 16, 16]               0
          Conv2d-144          [-1, 128, 16, 16]         147,456
       AvgPool2d-145            [-1, 512, 4, 4]               0
     BatchNorm2d-146            [-1, 512, 4, 4]           1,024
            ReLU-147            [-1, 512, 4, 4]               0
          Conv2d-148            [-1, 128, 4, 4]          65,536
     BatchNorm2d-149          [-1, 128, 16, 16]             256
            ReLU-150          [-1, 128, 16, 16]               0
          Conv2d-151          [-1, 128, 16, 16]         147,456
       AvgPool2d-152            [-1, 512, 2, 2]               0
     BatchNorm2d-153            [-1, 512, 2, 2]           1,024
            ReLU-154            [-1, 512, 2, 2]               0
          Conv2d-155            [-1, 128, 2, 2]          65,536
     BatchNorm2d-156          [-1, 128, 16, 16]             256
            ReLU-157          [-1, 128, 16, 16]               0
          Conv2d-158          [-1, 128, 16, 16]         147,456
AdaptiveAvgPool2d-159            [-1, 512, 1, 1]               0
     BatchNorm2d-160            [-1, 512, 1, 1]           1,024
            ReLU-161            [-1, 512, 1, 1]               0
          Conv2d-162            [-1, 128, 1, 1]          65,536
     BatchNorm2d-163          [-1, 128, 16, 16]             256
            ReLU-164          [-1, 128, 16, 16]               0
          Conv2d-165          [-1, 128, 16, 16]         147,456
     BatchNorm2d-166          [-1, 640, 16, 16]           1,280
            ReLU-167          [-1, 640, 16, 16]               0
          Conv2d-168          [-1, 128, 16, 16]          81,920
     BatchNorm2d-169          [-1, 512, 16, 16]           1,024
            ReLU-170          [-1, 512, 16, 16]               0
          Conv2d-171          [-1, 128, 16, 16]          65,536
           DAPPM-172          [-1, 128, 16, 16]               0
     BatchNorm2d-173        [-1, 128, 128, 128]             256
            ReLU-174        [-1, 128, 128, 128]               0
          Conv2d-175         [-1, 64, 128, 128]          73,728
     BatchNorm2d-176         [-1, 64, 128, 128]             128
            ReLU-177         [-1, 64, 128, 128]               0
          Conv2d-178          [-1, 8, 128, 128]             520
     segmenthead-179          [-1, 8, 128, 128]               0
================================================================
Total params: 5,695,272
Trainable params: 5,695,272
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 12.00
Forward/backward pass size (MB): 1181.08
Params size (MB): 21.73
Estimated Total Size (MB): 1214.80
---------------------------------------------------------------- 

As you see that output layer become a 128 H x 128 W resolution but my labels are 1024H x 1024W shape. I can resize my labels from 1024 pixels to 128 pixel but this cause much loss of pixel information. Is this configuration correct for 1024 pixel input? Is the output necessary to be 128 pixel which is 1/8 scaled form of input? @ydhongHIT

ydhongHIT commented 3 years ago

I build the "DDRNet23 Slim" model that you provided. I have images with shape of 1024 H x 1024 W x 3 C. There are 8 different classes in my dataset. When I check model summary with summary(net.cuda(),(3,1024,1024)), I get model summary like:

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 32, 512, 512]             896
       BatchNorm2d-2         [-1, 32, 512, 512]              64
              ReLU-3         [-1, 32, 512, 512]               0
            Conv2d-4         [-1, 32, 256, 256]           9,248
       BatchNorm2d-5         [-1, 32, 256, 256]              64
              ReLU-6         [-1, 32, 256, 256]               0
            Conv2d-7         [-1, 32, 256, 256]           9,216
       BatchNorm2d-8         [-1, 32, 256, 256]              64
              ReLU-9         [-1, 32, 256, 256]               0
           Conv2d-10         [-1, 32, 256, 256]           9,216
      BatchNorm2d-11         [-1, 32, 256, 256]              64
             ReLU-12         [-1, 32, 256, 256]               0
       BasicBlock-13         [-1, 32, 256, 256]               0
           Conv2d-14         [-1, 32, 256, 256]           9,216
      BatchNorm2d-15         [-1, 32, 256, 256]              64
             ReLU-16         [-1, 32, 256, 256]               0
           Conv2d-17         [-1, 32, 256, 256]           9,216
      BatchNorm2d-18         [-1, 32, 256, 256]              64
       BasicBlock-19         [-1, 32, 256, 256]               0
             ReLU-20         [-1, 32, 256, 256]               0
           Conv2d-21         [-1, 64, 128, 128]          18,432
      BatchNorm2d-22         [-1, 64, 128, 128]             128
             ReLU-23         [-1, 64, 128, 128]               0
           Conv2d-24         [-1, 64, 128, 128]          36,864
      BatchNorm2d-25         [-1, 64, 128, 128]             128
           Conv2d-26         [-1, 64, 128, 128]           2,048
      BatchNorm2d-27         [-1, 64, 128, 128]             128
             ReLU-28         [-1, 64, 128, 128]               0
       BasicBlock-29         [-1, 64, 128, 128]               0
           Conv2d-30         [-1, 64, 128, 128]          36,864
      BatchNorm2d-31         [-1, 64, 128, 128]             128
             ReLU-32         [-1, 64, 128, 128]               0
           Conv2d-33         [-1, 64, 128, 128]          36,864
      BatchNorm2d-34         [-1, 64, 128, 128]             128
       BasicBlock-35         [-1, 64, 128, 128]               0
             ReLU-36         [-1, 64, 128, 128]               0
           Conv2d-37          [-1, 128, 64, 64]          73,728
      BatchNorm2d-38          [-1, 128, 64, 64]             256
             ReLU-39          [-1, 128, 64, 64]               0
           Conv2d-40          [-1, 128, 64, 64]         147,456
      BatchNorm2d-41          [-1, 128, 64, 64]             256
           Conv2d-42          [-1, 128, 64, 64]           8,192
      BatchNorm2d-43          [-1, 128, 64, 64]             256
             ReLU-44          [-1, 128, 64, 64]               0
       BasicBlock-45          [-1, 128, 64, 64]               0
           Conv2d-46          [-1, 128, 64, 64]         147,456
      BatchNorm2d-47          [-1, 128, 64, 64]             256
             ReLU-48          [-1, 128, 64, 64]               0
           Conv2d-49          [-1, 128, 64, 64]         147,456
      BatchNorm2d-50          [-1, 128, 64, 64]             256
       BasicBlock-51          [-1, 128, 64, 64]               0
             ReLU-52         [-1, 64, 128, 128]               0
           Conv2d-53         [-1, 64, 128, 128]          36,864
      BatchNorm2d-54         [-1, 64, 128, 128]             128
             ReLU-55         [-1, 64, 128, 128]               0
           Conv2d-56         [-1, 64, 128, 128]          36,864
      BatchNorm2d-57         [-1, 64, 128, 128]             128
             ReLU-58         [-1, 64, 128, 128]               0
       BasicBlock-59         [-1, 64, 128, 128]               0
           Conv2d-60         [-1, 64, 128, 128]          36,864
      BatchNorm2d-61         [-1, 64, 128, 128]             128
             ReLU-62         [-1, 64, 128, 128]               0
           Conv2d-63         [-1, 64, 128, 128]          36,864
      BatchNorm2d-64         [-1, 64, 128, 128]             128
       BasicBlock-65         [-1, 64, 128, 128]               0
             ReLU-66         [-1, 64, 128, 128]               0
           Conv2d-67          [-1, 128, 64, 64]          73,728
      BatchNorm2d-68          [-1, 128, 64, 64]             256
             ReLU-69          [-1, 128, 64, 64]               0
           Conv2d-70           [-1, 64, 64, 64]           8,192
      BatchNorm2d-71           [-1, 64, 64, 64]             128
             ReLU-72          [-1, 128, 64, 64]               0
           Conv2d-73          [-1, 256, 32, 32]         294,912
      BatchNorm2d-74          [-1, 256, 32, 32]             512
             ReLU-75          [-1, 256, 32, 32]               0
           Conv2d-76          [-1, 256, 32, 32]         589,824
      BatchNorm2d-77          [-1, 256, 32, 32]             512
           Conv2d-78          [-1, 256, 32, 32]          32,768
      BatchNorm2d-79          [-1, 256, 32, 32]             512
             ReLU-80          [-1, 256, 32, 32]               0
       BasicBlock-81          [-1, 256, 32, 32]               0
           Conv2d-82          [-1, 256, 32, 32]         589,824
      BatchNorm2d-83          [-1, 256, 32, 32]             512
             ReLU-84          [-1, 256, 32, 32]               0
           Conv2d-85          [-1, 256, 32, 32]         589,824
      BatchNorm2d-86          [-1, 256, 32, 32]             512
       BasicBlock-87          [-1, 256, 32, 32]               0
             ReLU-88         [-1, 64, 128, 128]               0
           Conv2d-89         [-1, 64, 128, 128]          36,864
      BatchNorm2d-90         [-1, 64, 128, 128]             128
             ReLU-91         [-1, 64, 128, 128]               0
           Conv2d-92         [-1, 64, 128, 128]          36,864
      BatchNorm2d-93         [-1, 64, 128, 128]             128
             ReLU-94         [-1, 64, 128, 128]               0
       BasicBlock-95         [-1, 64, 128, 128]               0
           Conv2d-96         [-1, 64, 128, 128]          36,864
      BatchNorm2d-97         [-1, 64, 128, 128]             128
             ReLU-98         [-1, 64, 128, 128]               0
           Conv2d-99         [-1, 64, 128, 128]          36,864
     BatchNorm2d-100         [-1, 64, 128, 128]             128
      BasicBlock-101         [-1, 64, 128, 128]               0
            ReLU-102         [-1, 64, 128, 128]               0
          Conv2d-103          [-1, 128, 64, 64]          73,728
     BatchNorm2d-104          [-1, 128, 64, 64]             256
            ReLU-105          [-1, 128, 64, 64]               0
          Conv2d-106          [-1, 256, 32, 32]         294,912
     BatchNorm2d-107          [-1, 256, 32, 32]             512
            ReLU-108          [-1, 256, 32, 32]               0
          Conv2d-109           [-1, 64, 32, 32]          16,384
     BatchNorm2d-110           [-1, 64, 32, 32]             128
            ReLU-111         [-1, 64, 128, 128]               0
          Conv2d-112         [-1, 64, 128, 128]           4,096
     BatchNorm2d-113         [-1, 64, 128, 128]             128
            ReLU-114         [-1, 64, 128, 128]               0
          Conv2d-115         [-1, 64, 128, 128]          36,864
     BatchNorm2d-116         [-1, 64, 128, 128]             128
            ReLU-117         [-1, 64, 128, 128]               0
          Conv2d-118        [-1, 128, 128, 128]           8,192
     BatchNorm2d-119        [-1, 128, 128, 128]             256
          Conv2d-120        [-1, 128, 128, 128]           8,192
     BatchNorm2d-121        [-1, 128, 128, 128]             256
      Bottleneck-122        [-1, 128, 128, 128]               0
            ReLU-123          [-1, 256, 32, 32]               0
          Conv2d-124          [-1, 256, 32, 32]          65,536
     BatchNorm2d-125          [-1, 256, 32, 32]             512
            ReLU-126          [-1, 256, 32, 32]               0
          Conv2d-127          [-1, 256, 16, 16]         589,824
     BatchNorm2d-128          [-1, 256, 16, 16]             512
            ReLU-129          [-1, 256, 16, 16]               0
          Conv2d-130          [-1, 512, 16, 16]         131,072
     BatchNorm2d-131          [-1, 512, 16, 16]           1,024
          Conv2d-132          [-1, 512, 16, 16]         131,072
     BatchNorm2d-133          [-1, 512, 16, 16]           1,024
      Bottleneck-134          [-1, 512, 16, 16]               0
     BatchNorm2d-135          [-1, 512, 16, 16]           1,024
            ReLU-136          [-1, 512, 16, 16]               0
          Conv2d-137          [-1, 128, 16, 16]          65,536
       AvgPool2d-138            [-1, 512, 8, 8]               0
     BatchNorm2d-139            [-1, 512, 8, 8]           1,024
            ReLU-140            [-1, 512, 8, 8]               0
          Conv2d-141            [-1, 128, 8, 8]          65,536
     BatchNorm2d-142          [-1, 128, 16, 16]             256
            ReLU-143          [-1, 128, 16, 16]               0
          Conv2d-144          [-1, 128, 16, 16]         147,456
       AvgPool2d-145            [-1, 512, 4, 4]               0
     BatchNorm2d-146            [-1, 512, 4, 4]           1,024
            ReLU-147            [-1, 512, 4, 4]               0
          Conv2d-148            [-1, 128, 4, 4]          65,536
     BatchNorm2d-149          [-1, 128, 16, 16]             256
            ReLU-150          [-1, 128, 16, 16]               0
          Conv2d-151          [-1, 128, 16, 16]         147,456
       AvgPool2d-152            [-1, 512, 2, 2]               0
     BatchNorm2d-153            [-1, 512, 2, 2]           1,024
            ReLU-154            [-1, 512, 2, 2]               0
          Conv2d-155            [-1, 128, 2, 2]          65,536
     BatchNorm2d-156          [-1, 128, 16, 16]             256
            ReLU-157          [-1, 128, 16, 16]               0
          Conv2d-158          [-1, 128, 16, 16]         147,456
AdaptiveAvgPool2d-159            [-1, 512, 1, 1]               0
     BatchNorm2d-160            [-1, 512, 1, 1]           1,024
            ReLU-161            [-1, 512, 1, 1]               0
          Conv2d-162            [-1, 128, 1, 1]          65,536
     BatchNorm2d-163          [-1, 128, 16, 16]             256
            ReLU-164          [-1, 128, 16, 16]               0
          Conv2d-165          [-1, 128, 16, 16]         147,456
     BatchNorm2d-166          [-1, 640, 16, 16]           1,280
            ReLU-167          [-1, 640, 16, 16]               0
          Conv2d-168          [-1, 128, 16, 16]          81,920
     BatchNorm2d-169          [-1, 512, 16, 16]           1,024
            ReLU-170          [-1, 512, 16, 16]               0
          Conv2d-171          [-1, 128, 16, 16]          65,536
           DAPPM-172          [-1, 128, 16, 16]               0
     BatchNorm2d-173        [-1, 128, 128, 128]             256
            ReLU-174        [-1, 128, 128, 128]               0
          Conv2d-175         [-1, 64, 128, 128]          73,728
     BatchNorm2d-176         [-1, 64, 128, 128]             128
            ReLU-177         [-1, 64, 128, 128]               0
          Conv2d-178          [-1, 8, 128, 128]             520
     segmenthead-179          [-1, 8, 128, 128]               0
================================================================
Total params: 5,695,272
Trainable params: 5,695,272
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 12.00
Forward/backward pass size (MB): 1181.08
Params size (MB): 21.73
Estimated Total Size (MB): 1214.80
---------------------------------------------------------------- 

As you see that output layer become a 128 H x 128 W resolution but my labels are 1024H x 1024W shape. I can resize my labels from 1024 pixels to 128 pixel but this cause much loss of pixel information. Is this configuration correct for 1024 pixel input? Is the output necessary to be 128 pixel which is 1/8 scaled form of input? @ydhongHIT

It is necessary to calculate at 1/8 resolution for real-time speed. Most state-of-the-art models also output a 1/8-resolution feature and then it is directly upsampled to the original resolution. Thus, you don't need to downsample the label. On the contrary, you should upsample the output.

dasmehdix commented 3 years ago

@ydhongHIT Thanks for answer. Probably, I am going to use DDRNet for my research & going to cite you.

ydhongHIT commented 3 years ago

@ydhongHIT Thanks for answer. Probably, I am going to use DDRNet for my research & going to cite you.

Thanks for your interest on my work.

ydhongHIT commented 3 years ago

@ydhongHIT Thanks for answer. Probably, I am going to use DDRNet for my research & going to cite you.

Thanks for your interest on my work.

dasmehdix commented 3 years ago

@ydhongHIT Which loss function you use? I check the paper multiple times but can not observe the loss function. I know you used "main loss + aux loss" but I wonder the loss function type that you guys use. Jaccard maybe?

ydhongHIT commented 3 years ago

@ydhongHIT Which loss function you use? I check the paper multiple times but can not observe the loss function. I know you used "main loss + aux loss" but I wonder the loss function type that you guys use. Jaccard maybe?

I use the cross-entropy loss, which is mentioned in the paper "The final loss which is sum of cross-entropy can be expressed as:".