Hi, i trained using my custom dataset. the trained worked well. but during testing, i get this error. I even tried to test it with the dataset i trained on. still the same error
loading annotations into memory...
Done (t=0.10s)
creating index...
index created!
2020-08-18 16:38:42,344 maskrcnn_benchmark.inference INFO: Start evaluation on 1042 images
0it [00:00, ?it/s]THCudaCheck FAIL file=/pytorch/aten/src/THC/THCGeneral.cpp line=405 error=11 : invalid argument
Traceback (most recent call last):
File "tools/test_net.py", line 94, in <module>
main()
File "tools/test_net.py", line 88, in main
maskiou_on=cfg.MODEL.MASKIOU_ON
File "/home/eldad/anaconda3/lib/python3.7/site-packages/maskrcnn_benchmark-0.1-py3.7-linux-x86_64.egg/maskrcnn_benchmark/engine/inference.py", line 379, in inference
predictions = compute_on_dataset(model, data_loader, device)
File "/home/eldad/anaconda3/lib/python3.7/site-packages/maskrcnn_benchmark-0.1-py3.7-linux-x86_64.egg/maskrcnn_benchmark/engine/inference.py", line 31, in compute_on_dataset
output = model(images)
File "/home/eldad/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 489, in __call__
result = self.forward(*input, **kwargs)
File "/home/eldad/anaconda3/lib/python3.7/site-packages/maskrcnn_benchmark-0.1-py3.7-linux-x86_64.egg/maskrcnn_benchmark/modeling/detector/generalized_rcnn.py", line 51, in forward
x, result, detector_losses = self.roi_heads(features, proposals, targets)
File "/home/eldad/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 489, in __call__
result = self.forward(*input, **kwargs)
File "/home/eldad/anaconda3/lib/python3.7/site-packages/maskrcnn_benchmark-0.1-py3.7-linux-x86_64.egg/maskrcnn_benchmark/modeling/roi_heads/roi_heads.py", line 43, in forward
loss_maskiou, detections = self.maskiou(roi_feature, detections, selected_mask, labels, maskiou_targets)
File "/home/eldad/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 489, in __call__
result = self.forward(*input, **kwargs)
File "/home/eldad/anaconda3/lib/python3.7/site-packages/maskrcnn_benchmark-0.1-py3.7-linux-x86_64.egg/maskrcnn_benchmark/modeling/roi_heads/maskiou_head/maskiou_head.py", line 41, in forward
x = self.feature_extractor(features, selected_mask)
File "/home/eldad/anaconda3/lib/python3.7/site-packages/torch/nn/modules/module.py", line 489, in __call__
result = self.forward(*input, **kwargs)
File "/home/eldad/anaconda3/lib/python3.7/site-packages/maskrcnn_benchmark-0.1-py3.7-linux-x86_64.egg/maskrcnn_benchmark/modeling/roi_heads/maskiou_head/roi_maskiou_feature_extractors.py", line 39, in forward
x = torch.cat((x, mask_pool), 1)
RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 1. Got 5 and 20 in dimension 0 at /pytorch/aten/src/THC/generic/THCTensorMath.cu:83
this is the tools/test_net.py file i used for testing
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
# Set up custom environment before nearly anything else is imported
# NOTE: this should be the first import (no not reorder)
from maskrcnn_benchmark.utils.env import setup_environment # noqa F401 isort:skip
import argparse
import os
import torch
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.data import make_data_loader
from maskrcnn_benchmark.engine.inference import inference
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.utils.collect_env import collect_env_info
from maskrcnn_benchmark.utils.comm import synchronize, get_rank
from maskrcnn_benchmark.utils.logger import setup_logger
from maskrcnn_benchmark.utils.miscellaneous import mkdir
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Inference")
parser.add_argument(
"--config-file",
default="/home/eldad/maskscoring_rcnn/configs/e2e_ms_rcnn_R_50_FPN_1x.yaml",
metavar="FILE",
help="path to config file",
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
distributed = num_gpus > 1
if distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.deprecated.init_process_group(
backend="nccl", init_method="env://"
)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
save_dir = ""
logger = setup_logger("maskrcnn_benchmark", save_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(cfg)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
model = build_detection_model(cfg)
model.to(cfg.MODEL.DEVICE)
output_dir = cfg.OUTPUT_DIR
checkpointer = DetectronCheckpointer(cfg, model, save_dir=output_dir)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
iou_types = ("bbox",)
if cfg.MODEL.MASK_ON:
iou_types = iou_types + ("segm",)
output_folders = [None] * len(cfg.DATASETS.TEST)
if cfg.OUTPUT_DIR:
dataset_names = cfg.DATASETS.TEST
for idx, dataset_name in enumerate(dataset_names):
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name)
mkdir(output_folder)
output_folders[idx] = output_folder
data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)
for output_folder, data_loader_val in zip(output_folders, data_loaders_val):
inference(
model,
data_loader_val,
iou_types=iou_types,
box_only=cfg.MODEL.RPN_ONLY,
device=cfg.MODEL.DEVICE,
expected_results=cfg.TEST.EXPECTED_RESULTS,
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
output_folder=output_folder,
maskiou_on=cfg.MODEL.MASKIOU_ON
)
synchronize()
if __name__ == "__main__":
main()
Thanks for pointing to the right solution.
i found out that, \maskrcnn_benchmark\modeling\roi_heads\maskiou_head\roi_maskiou_feature_extractors.py before x = torch.cat((x, mask_pool), 1) has this shape
Hi, i trained using my custom dataset. the trained worked well. but during testing, i get this error. I even tried to test it with the dataset i trained on. still the same error
this is the
tools/test_net.py
file i used for testingThanks for pointing to the right solution. i found out that,
\maskrcnn_benchmark\modeling\roi_heads\maskiou_head\roi_maskiou_feature_extractors.py
beforex = torch.cat((x, mask_pool), 1)
has this shapeAs you can see, size(0) does not match.