zyjwuyan / BBS-Net

PyTorch implementation of the paper 'BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network, ECCV2020'
MIT License
73 stars 13 forks source link

BBS-Net

BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network


Figure 1: Pipeline of the BBS-Net.

1. Requirements

Python 3.7, Pytorch 0.4.0+, Cuda 10.0, TensorboardX 2.0, opencv-python

2. Data Preparation

3. Training & Testing

4.2 Results of multiple backbones


Table 2: Performance comparison using different backbones.

4.3 Download

Please cite the following paper if you use this repository in your reseach.

@inproceedings{fan2020bbsnet,
title={BBS-Net: RGB-D Salient Object Detection with a Bifurcated Backbone Strategy Network},
author={Fan, Deng-Ping and Zhai, Yingjie and Borji, Ali and Yang, Jufeng and Shao, Ling},
booktitle={ECCV},
year={2020}
}

6. Benchmark RGB-D SOD

The complete RGB-D SOD benchmark can be found in this page:

http://dpfan.net/d3netbenchmark/

7. Acknowledgement

We implement this project based on the code of ‘Cascaded Partial Decoder for Fast and Accurate Salient Object Detection, CVPR2019’ proposed by Wu et al.