This database has been established by a collaborative research group to support comparative studies on automatic segmentation algorithms on retinal fundus images. The database will be iteratively extended and the webpage will be improved.
We would like to help researchers in the evaluation of segmentation algorithms. We encourage anyone working with segmentation algorithms who found our database useful to send us their evaluation results with a reference to a paper where it is described. This way we can extend our database of algorithms with the given results to keep it always up-to-date.
The database can be used freely for research purposes. We release it under Creative Commons 4.0 Attribution License. If you are using our database to evaluate your methods, please cite
Budai, Attila; Bock, Rüdiger; Maier, Andreas; Hornegger, Joachim; Michelson, Georg. Robust Vessel Segmentation in Fundus Images. International Journal of Biomedical Imaging, vol. 2013, 2013
Data
Segmentation Dataset
The public database contains at the moment 15 images of healthy patients, 15 images of patients with diabetic retinopathy and 15 images of glaucomatous patients. Binary gold standard vessel segmentation images are available for each image. Also the masks determining field of view (FOV) are provided for particular datasets. The gold standard data is generated by a group of experts working in the field of retinal image analysis and clinicians from the cooperated ophthalmology clinics. We intend to add further gold standard data to the existing images to help the evaluation of algorithms which localize the macula, optic disc, or differentiate between arteries and veins.
ntroduction
This database has been established by a collaborative research group to support comparative studies on automatic segmentation algorithms on retinal fundus images. The database will be iteratively extended and the webpage will be improved. We would like to help researchers in the evaluation of segmentation algorithms. We encourage anyone working with segmentation algorithms who found our database useful to send us their evaluation results with a reference to a paper where it is described. This way we can extend our database of algorithms with the given results to keep it always up-to-date.
The database can be used freely for research purposes. We release it under Creative Commons 4.0 Attribution License. If you are using our database to evaluate your methods, please cite
Budai, Attila; Bock, Rüdiger; Maier, Andreas; Hornegger, Joachim; Michelson, Georg. Robust Vessel Segmentation in Fundus Images. International Journal of Biomedical Imaging, vol. 2013, 2013
Data Segmentation Dataset The public database contains at the moment 15 images of healthy patients, 15 images of patients with diabetic retinopathy and 15 images of glaucomatous patients. Binary gold standard vessel segmentation images are available for each image. Also the masks determining field of view (FOV) are provided for particular datasets. The gold standard data is generated by a group of experts working in the field of retinal image analysis and clinicians from the cooperated ophthalmology clinics. We intend to add further gold standard data to the existing images to help the evaluation of algorithms which localize the macula, optic disc, or differentiate between arteries and veins.