Closed Charmve closed 3 years ago
项目地址:https://github.com/Charmve/Semantic-Segmentation-PyTorch
类别:Python、机器学习
目前已经完成的网络、模型
项目后续更新计划:
我将首先在PyTorch中实现The Image Segmentation Paper Top10 Net。
[ ] DeepLab v3
[ ] RefineNet
[ ] ImageNet
[ ] GoogleNet
[ ] More dataset (e.g. ADE)
项目描述:PyTorch implementation for Semantic Segmentation, include FCN, U-Net, SegNet, GCN, PSPNet, Deeplabv3, Deeplabv3+, Mask R-CNN, DUC, GoogleNet, and more dataset
推荐理由:最简单实用的语义分割源代码!对初学者友好,对工程实践者便利!
示例代码:(可选)长度:1-20 行
U-Net两步网络的实现
class _EncoderBlock(nn.Module): def __init__(self, in_channels, out_channels, dropout=False): super(_EncoderBlock, self).__init__() layers = [ nn.Conv2d(in_channels, out_channels, kernel_size=3), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, kernel_size=3), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), ] if dropout: layers.append(nn.Dropout()) layers.append(nn.MaxPool2d(kernel_size=2, stride=2)) self.encode = nn.Sequential(*layers) def forward(self, x): return self.encode(x) class _DecoderBlock(nn.Module): def __init__(self, in_channels, middle_channels, out_channels): super(_DecoderBlock, self).__init__() self.decode = nn.Sequential( nn.Conv2d(in_channels, middle_channels, kernel_size=3), nn.BatchNorm2d(middle_channels), nn.ReLU(inplace=True), nn.Conv2d(middle_channels, middle_channels, kernel_size=3), nn.BatchNorm2d(middle_channels), nn.ReLU(inplace=True), nn.ConvTranspose2d(middle_channels, out_channels, kernel_size=2, stride=2), )
非常感谢您推荐项目。
该项目暂不能收录到 HelloGitHub 月刊中,HelloGitHub 推荐项目审核标准 #271。 期待持续完善该项目,后续推荐更多的项目。
再次感谢您对 HelloGitHub 的支持 🙏
项目推荐
项目地址:https://github.com/Charmve/Semantic-Segmentation-PyTorch
类别:Python、机器学习
目前已经完成的网络、模型
项目后续更新计划:
我将首先在PyTorch中实现The Image Segmentation Paper Top10 Net。
[ ] DeepLab v3
[ ] RefineNet
[ ] ImageNet
[ ] GoogleNet
[ ] More dataset (e.g. ADE)
项目描述:PyTorch implementation for Semantic Segmentation, include FCN, U-Net, SegNet, GCN, PSPNet, Deeplabv3, Deeplabv3+, Mask R-CNN, DUC, GoogleNet, and more dataset
推荐理由:最简单实用的语义分割源代码!对初学者友好,对工程实践者便利!
示例代码:(可选)长度:1-20 行
U-Net两步网络的实现