micronet, a model compression and deploy lib. compression: 1、quantization: quantization-aware-training(QAT), High-Bit(>2b)(DoReFa/Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference)、Low-Bit(≤2b)/Ternary and Binary(TWN/BNN/XNOR-Net); post-training-quantization(PTQ), 8-bit(tensorrt); 2、 pruning: normal、regular and group convolutional channel pruning; 3、 group convolution structure; 4、batch-normalization fuse for quantization. deploy: tensorrt, fp32/fp16/int8(ptq-calibration)、op-adapt(upsample)、dynamic_shape
请教大佬,请问如何获取压缩后的模型?目前网上能搜到开源的代码只有filter pruning(整个通道的剪枝)如何获取剪枝后的模型,针对weight pruning方式(我理解为是3*3卷积核有很多为0),如何获取压缩后的模型,实在是找不到了。另外压缩率的公式如何计算?实际计算过程,需要考虑BN层的参数吗?因为没办法获取压缩后的模型,只能是计算整个网络有多少为0的卷积核数量除以总的卷积核数量,请问这样可以吗?