-
* [christophM/interpretable-ml-book: Book about interpretable machine learning](https://github.com/christophM/interpretable-ml-book)
* [Interpretable Machine Learning](https://christophm.github.io/in…
-
主に【Interpretable Machine Learning】の第5項についての資料
原著
https://christophm.github.io/interpretable-ml-book/
日本語訳
https://hacarus.github.io/interpretable-ml-book-ja/
-
主に【Interpretable Machine Learning】の第4項についての資料
原著
https://christophm.github.io/interpretable-ml-book/
日本語訳
https://hacarus.github.io/interpretable-ml-book-ja/
-
# Assessing Interpretable Models | Practical Cheminformatics
Understanding and comparing the rationale behind machine learning model predictions
[https://patwalters.github.io/practicalcheminformatic…
-
- AutoML
- Interpretable ML
- ML lifecycle
- Interactive visualization
- etc.
-
# Tweet summary
PDP (Partial Deference Plot)
- Assumption: Fix all other variables, generate simulation on target variables
- Biggest issue: non-realistic parameter combination, i.e. 200cm 40kg
…
-
> If possible it would be nice to get a small subset of past dataset related to this flagged comments/post/thread from ResearchHub and some other that are neutral or considered good post. Something of…
-
Hey! I just saw your paper and I was curious if you compared this to Explainable Boosting Machines.
From what I can see from your description, you're using SHAP with bagging on XGBoost models. The EB…
-
https://christophm.github.io/interpretable-ml-book/
-
Hello.
I was interested in using this code for a dataset purpose but, can't find this file: C:\\Users\\karim\\PycharmProjects\\HumanML3D\\kit_with_splits_2023.npz'
Thanks for your help @rd20kari…