-
**when I use 'TPU v3-32 'and 'tf 1.13' to train xlnet ,it tell me a error. How can I fix it!**
Found TPU system:
tpu_system_metadata.py:121] *** Num TPU Cores: 8
tpu_system_metadata.py:122] …
-
Using the free TPU Colab instances:
```
import jax.tools.colab_tpu
jax.tools.colab_tpu.setup_tpu()
import psutil
def available_ram_mb():
return psutil.virtual_memory().available // (1024…
-
## Fix the model test for `simple_gpt.py`
1. setup env according to [Run a model under torch_xla2](https://github.com/pytorch/xla/blob/master/experimental/torch_xla2/docs/support_a_new_model.md)
2…
-
While testing TPUs provisioning, I noticed that both on-demand and spot TPUs can be deleted right after a successful call to create the TPU. The server correctly fails the job with FAILED_TO_START_DUE…
-
**Documentation**
[MLIR Language Reference](https://mlir.llvm.org/docs/LangRef/)
[MLIR Bytecode Format](https://mlir.llvm.org/docs/BytecodeFormat/)
**Examples:**
[1043.mlir.zip](https://github.com/lu…
-
I have fine-tuned the qwen2.5-7b-instruction model using Llama Factory, and now I need to deploy the fine-tuned qwen2.5 model on TPU.
How should I proceed with the support?
I have noticed that…
-
1.git lfs卡住,要ctrl+c断掉然后再进repo,做git lfs pull
2.chatglm3-6b必须放在/workspace/目录下。
3.保证磁盘空间充足,可用空间>200G.
4.编译出来的可执行程序在build里面,但是实际上要在build的上一级目录运行。
-
-
Create an example using TPUs for training. IT can be in Colab
-
## GPU Graphics Processing Unit 画像処理装置
- 画像描写(3Dグラフィックスなど)を行う際に必要となる、計算処理を行う半導体チップ(プロセッサ)
- パソコンの頭脳はCPUだが、3Dグラフィックス描写に関する計算処理はGPUに任せられる。画像描写専門の頭脳
- CPUに比べ「単純かつ膨大な量のデータ」を短時間で処理することが得意
- CPUの数倍~100…