-
🔍 Problem Description:
The rapid advancement of technology and online platforms has led to a significant increase in the amount of data generated. Predicting sales trends can be a complex challenge f…
-
How to forecast multivariate series?
-
HOW should we treat the data differently, given it's a time-cts climite prediction problems.
Helpful posts:
- https://www.kaggle.com/competitions/widsdatathon2023/discussion/376574
-
https://www…
-
**Is your feature request related to a problem? Please describe.**
sktime currently lacks built-in tools for model explainability, making it difficult for users to interpret and understand the pred…
-
@titzenic
FYI: Es wird eine neue Spalte "rate_of_change" hinzugefügt
Bei allen Aufgaben ist Visualisierung mit inbegriffen. Für Visualisierung entweder Matplotlib oder (bevorzugt) Seaborn.
Mögli…
-
您好,作者,感谢提供如此完整的学习框架!本人在使用和移植基线的过程中遇到一些问题和不便的地方,在此提出来以便您参考优化。
声明:以下问题和建议仅代表个人看法,仅供参考
问题:利用pycham直接运行data_preparation显示找不到数据集文件,运行train时也一样,做如下修改就可以运行:
OUTPUT_DIR = "../../../experiments/datasets…
-
- Is there a "right way" to handle missing values for this model?
- How should I pad when time series have non-uniform lengths in a batch?
-
@jdb78
I used 150,000 pieces of data to create a dataset,add'series' and 'time_idx' column like this:
```
.......
data_len=150000
max_encoder_length = 4*96
max_prediction_length …
-
Objective: Apply a traditional approach using different models such as Auto Regression, Moving Average, Random walk to do time series analysis on different stock datasets and prediction for the datas…
-
I am using this model on stock companies to predict their price of next ten days . Does TimesFm support time series prediction with multiple input features? Along with price, can we give input feature…