Closed UtkarshBhardwaj007 closed 3 years ago
Hi, I’m not 100% sure but it seems like either a problem reading the data, or something with new versions of pytorch.
I would make sure your data folder structure is as described in the README, and if that doesn’t help, maybe try an older pytorch version?
Thanks
The directory structure is just as is mentioned in the README. However, I an uncertain as to which versions of all the required libraries should I use. Could you maybe freeze your environment using pip or anaconda to generate a requirements.txt file?
Yeah I know I should have done that. I did this project while I was a master's student, still uneducated in the ways of proper engineering etiquette such as requirements.
I no longer have the environment I used for this project, as it was on a school computer server which is long gone.
But I'm pretty sure you can just use the latest Pytorch version from the date I initially uploaded this repo.
We were all in that phase once weren't we. Thanks for your replies and I will try to figure this out.
I've been trying to run the trained example using the following query -
python test.py --phase test --serial_test --name robotcar_2day --dataroot ./datasets/test_set --n_domains 2 --which_epoch 150 --loadSize 512
I am facing the following error in the same. It seems like in line 24, enumerate isn't returning anything. Following is the entire execution result.
------------ Options ------------- aspect_ratio: 1.0 autoencode: False batchSize: 1 checkpoints_dir: ./checkpoints dataroot: ./datasets/test_set display_id: 0 display_port: 8097 display_single_pane_ncols: 0 display_winsize: 256 fineSize: 256 gpu_ids: [0] how_many: 50 input_nc: 3 isTrain: False loadSize: 512 max_dataset_size: inf nThreads: 2 n_domains: 2 name: robotcar_2day ndf: 64 netD_n_layers: 4 netG_n_blocks: 9 netG_n_shared: 0 ngf: 64 no_flip: False norm: instance output_nc: 3 phase: test reconstruct: False resize_or_crop: resize_and_crop results_dir: ./results/ serial_test: True show_matrix: False use_dropout: False which_epoch: 150 -------------- End ---------------- ---------- Networks initialized ------------- ResnetGenEncoder( (model): Sequential( (0): ReflectionPad2d((3, 3, 3, 3)) (1): Conv2d(3, 64, kernel_size=(7, 7), stride=(1, 1)) (2): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (5): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (6): PReLU(num_parameters=1) (7): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (8): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (9): PReLU(num_parameters=1) (10): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (11): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (12): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (13): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) ) ) ResnetGenDecoder( (model): Sequential( (0): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (1): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (2): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (3): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (4): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (5): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (6): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (7): PReLU(num_parameters=1) (8): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (9): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (10): PReLU(num_parameters=1) (11): ReflectionPad2d((3, 3, 3, 3)) (12): Conv2d(64, 3, kernel_size=(7, 7), stride=(1, 1)) (13): Tanh() ) ) Created 2 Encoder-Decoder pairs Number of parameters per Encoder: 5099143 Number of parameters per Deocder: 6565770
------------ Options ------------- aspect_ratio: 1.0 autoencode: False batchSize: 1 checkpoints_dir: ./checkpoints dataroot: ./datasets/test_set display_id: 0 display_port: 8097 display_single_pane_ncols: 0 display_winsize: 256 fineSize: 256 gpu_ids: [0] how_many: 50 input_nc: 3 isTrain: False loadSize: 512 max_dataset_size: inf nThreads: 2 n_domains: 2 name: robotcar_2day ndf: 64 netD_n_layers: 4 netG_n_blocks: 9 netG_n_shared: 0 ngf: 64 no_flip: False norm: instance output_nc: 3 phase: test reconstruct: False resize_or_crop: resize_and_crop results_dir: ./results/ serial_test: True show_matrix: False use_dropout: False which_epoch: 150 -------------- End ---------------- ---------- Networks initialized ------------- ResnetGenEncoder( (model): Sequential( (0): ReflectionPad2d((3, 3, 3, 3)) (1): Conv2d(3, 64, kernel_size=(7, 7), stride=(1, 1)) (2): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (5): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (6): PReLU(num_parameters=1) (7): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (8): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (9): PReLU(num_parameters=1) (10): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (11): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (12): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (13): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) ) ) ResnetGenDecoder( (model): Sequential( (0): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (1): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (2): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (3): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (4): ResnetBlock( (conv_block): SequentialContext( (0): ReflectionPad2d((1, 1, 1, 1)) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (2): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (3): PReLU(num_parameters=1) (4): ReflectionPad2d((1, 1, 1, 1)) (5): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1)) (6): InstanceNorm2d(256, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) ) ) (5): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (6): InstanceNorm2d(128, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (7): PReLU(num_parameters=1) (8): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (9): InstanceNorm2d(64, eps=1e-05, momentum=0.1, affine=False, track_running_stats=False) (10): PReLU(num_parameters=1) (11): ReflectionPad2d((3, 3, 3, 3)) (12): Conv2d(64, 3, kernel_size=(7, 7), stride=(1, 1)) (13): Tanh() ) ) Created 2 Encoder-Decoder pairs Number of parameters per Encoder: 5099143 Number of parameters per Deocder: 6565770
Traceback (most recent call last): File "", line 1, in
File "D:\anaconda3\envs\torchenv\lib\multiprocessing\spawn.py", line 105, in spawn_main
exitcode = _main(fd)
File "D:\anaconda3\envs\torchenv\lib\multiprocessing\spawn.py", line 114, in _main
prepare(preparation_data)
File "D:\anaconda3\envs\torchenv\lib\multiprocessing\spawn.py", line 225, in prepare
_fixup_main_from_path(data['init_main_from_path'])
File "D:\anaconda3\envs\torchenv\lib\multiprocessing\spawn.py", line 277, in _fixup_main_from_path
run_name="mp_main__")
File "D:\anaconda3\envs\torchenv\lib\runpy.py", line 263, in run_path
pkg_name=pkg_name, script_name=fname)
File "D:\anaconda3\envs\torchenv\lib\runpy.py", line 96, in _run_module_code
mod_name, mod_spec, pkg_name, script_name)
File "D:\anaconda3\envs\torchenv\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\Users\ub226\Desktop\2day\ToDayGAN\test.py", line 24, in
for i, data in enumerate(dataset):
File "C:\Users\ub226\Desktop\2day\ToDayGAN\data\data_loader.py", line 21, in iter
for i, data in enumerate(self.dataloader):
File "D:\anaconda3\envs\torchenv\lib\site-packages\torch\utils\data\dataloader.py", line 352, in iter__
return self._get_iterator()
File "D:\anaconda3\envs\torchenv\lib\site-packages\torch\utils\data\dataloader.py", line 294, in _get_iterator
return _MultiProcessingDataLoaderIter(self)
File "D:\anaconda3\envs\torchenv\lib\site-packages\torch\utils\data\dataloader.py", line 801, in init
w.start()
File "D:\anaconda3\envs\torchenv\lib\multiprocessing\process.py", line 105, in start
self._popen = self._Popen(self)
File "D:\anaconda3\envs\torchenv\lib\multiprocessing\context.py", line 223, in _Popen
return _default_context.get_context().Process._Popen(process_obj)
File "D:\anaconda3\envs\torchenv\lib\multiprocessing\context.py", line 322, in _Popen
return Popen(process_obj)
File "D:\anaconda3\envs\torchenv\lib\multiprocessing\popen_spawn_win32.py", line 33, in init
prep_data = spawn.get_preparation_data(process_obj._name)
File "D:\anaconda3\envs\torchenv\lib\multiprocessing\spawn.py", line 143, in get_preparation_data
_check_not_importing_main()
File "D:\anaconda3\envs\torchenv\lib\multiprocessing\spawn.py", line 136, in _check_not_importing_main
is not going to be frozen to produce an executable.''')
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.
Traceback (most recent call last): File "D:\anaconda3\envs\torchenv\lib\site-packages\torch\utils\data\dataloader.py", line 872, in _try_get_data data = self._data_queue.get(timeout=timeout) File "D:\anaconda3\envs\torchenv\lib\multiprocessing\queues.py", line 105, in get raise Empty queue.Empty
The above exception was the direct cause of the following exception:
Traceback (most recent call last): File "test.py", line 24, in
for i, data in enumerate(dataset):
File "C:\Users\ub226\Desktop\2day\ToDayGAN\data\data_loader.py", line 21, in iter
for i, data in enumerate(self.dataloader):
File "D:\anaconda3\envs\torchenv\lib\site-packages\torch\utils\data\dataloader.py", line 435, in next
data = self._next_data()
File "D:\anaconda3\envs\torchenv\lib\site-packages\torch\utils\data\dataloader.py", line 1068, in _next_data
idx, data = self._get_data()
File "D:\anaconda3\envs\torchenv\lib\site-packages\torch\utils\data\dataloader.py", line 1034, in _get_data
success, data = self._try_get_data()
File "D:\anaconda3\envs\torchenv\lib\site-packages\torch\utils\data\dataloader.py", line 885, in _try_get_data
raise RuntimeError('DataLoader worker (pid(s) {}) exited unexpectedly'.format(pids_str)) from e
RuntimeError: DataLoader worker (pid(s) 17648) exited unexpectedly