I made change for 5000 number of iteration to train my images in file /packages/classifier.py.
Following are the changes I made.
Here is code snippet.
batch_size = 200
image_size = 300
nrof_images = len(path)
print(nrof_images)
nrof_batches_per_epoch=5000
emb_array = np.zeros((nrof_images, embedding_size))
for i in range(nrof_batches_per_epoch):
After running classifier_train.py , I got following error:
Traceback (most recent call last):
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1322, in _do_call
return fn(*args)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1307, in _run_fn
options, feed_dict, fetch_list, target_list, run_metadata)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1409, in _call_tf_sessionrun
run_metadata)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero
[[Node: InceptionResnetV1/Logits/Flatten/flatten/Reshape = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"](InceptionResnetV1/Logits/AvgPool_1a_8x8/AvgPool, InceptionResnetV1/Logits/Flatten/flatten/Reshape/shape)]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "classifier_train.py", line 14, in
get_file=obj.main_train()
File "/home/ubuntu/brgupta_workspace/face_recognition/facenet/packages/classifier.py", line 51, in main_train
emb_array[start_index:end_index, :] = sess.run(embeddings, feed_dict=feed_dict)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 900, in run
run_metadata_ptr)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1135, in _run
feed_dict_tensor, options, run_metadata)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1316, in _do_run
run_metadata)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1335, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero
[[Node: InceptionResnetV1/Logits/Flatten/flatten/Reshape = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"](InceptionResnetV1/Logits/AvgPool_1a_8x8/AvgPool, InceptionResnetV1/Logits/Flatten/flatten/Reshape/shape)]]
Caused by op 'InceptionResnetV1/Logits/Flatten/flatten/Reshape', defined at:
File "classifier_train.py", line 14, in
get_file=obj.main_train()
File "/home/ubuntu/brgupta_workspace/face_recognition/facenet/packages/classifier.py", line 30, in main_train
facenet.load_model(self.modeldir)
File "/home/ubuntu/brgupta_workspace/face_recognition/facenet/packages/facenet.py", line 388, in load_model
saver = tf.train.import_meta_graph(os.path.join(model_exp, meta_file))
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/training/saver.py", line 1955, in import_meta_graph
*kwargs)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/framework/meta_graph.py", line 743, in import_scoped_meta_graph
producer_op_list=producer_op_list)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/util/deprecation.py", line 432, in new_func
return func(args, **kwargs)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/framework/importer.py", line 513, in import_graph_def
_ProcessNewOps(graph)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/framework/importer.py", line 303, in _ProcessNewOps
for new_op in graph._add_new_tf_operations(compute_devices=False): # pylint: disable=protected-access
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 3540, in _add_new_tf_operations
for c_op in c_api_util.new_tf_operations(self)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 3540, in
for c_op in c_api_util.new_tf_operations(self)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 3428, in _create_op_from_tf_operation
ret = Operation(c_op, self)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 1718, in init
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
InvalidArgumentError (see above for traceback): Reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero
[[Node: InceptionResnetV1/Logits/Flatten/flatten/Reshape = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"](InceptionResnetV1/Logits/AvgPool_1a_8x8/AvgPool, InceptionResnetV1/Logits/Flatten/flatten/Reshape/shape)]]
Please help me to train my images for 10000 number of iterations.
Thanks in advance.
Hi,
I made change for 5000 number of iteration to train my images in file /packages/classifier.py. Following are the changes I made. Here is code snippet. batch_size = 200 image_size = 300 nrof_images = len(path) print(nrof_images)
nrof_batches_per_epoch = int(math.ceil(1.0 * nrof_images / batch_size))
After running classifier_train.py , I got following error:
Traceback (most recent call last): File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1322, in _do_call return fn(*args) File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1307, in _run_fn options, feed_dict, fetch_list, target_list, run_metadata) File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1409, in _call_tf_sessionrun run_metadata) tensorflow.python.framework.errors_impl.InvalidArgumentError: Reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero [[Node: InceptionResnetV1/Logits/Flatten/flatten/Reshape = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"](InceptionResnetV1/Logits/AvgPool_1a_8x8/AvgPool, InceptionResnetV1/Logits/Flatten/flatten/Reshape/shape)]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last): File "classifier_train.py", line 14, in
get_file=obj.main_train()
File "/home/ubuntu/brgupta_workspace/face_recognition/facenet/packages/classifier.py", line 51, in main_train
emb_array[start_index:end_index, :] = sess.run(embeddings, feed_dict=feed_dict)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 900, in run
run_metadata_ptr)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1135, in _run
feed_dict_tensor, options, run_metadata)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1316, in _do_run
run_metadata)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1335, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero
[[Node: InceptionResnetV1/Logits/Flatten/flatten/Reshape = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"](InceptionResnetV1/Logits/AvgPool_1a_8x8/AvgPool, InceptionResnetV1/Logits/Flatten/flatten/Reshape/shape)]]
Caused by op 'InceptionResnetV1/Logits/Flatten/flatten/Reshape', defined at: File "classifier_train.py", line 14, in
get_file=obj.main_train()
File "/home/ubuntu/brgupta_workspace/face_recognition/facenet/packages/classifier.py", line 30, in main_train
facenet.load_model(self.modeldir)
File "/home/ubuntu/brgupta_workspace/face_recognition/facenet/packages/facenet.py", line 388, in load_model
saver = tf.train.import_meta_graph(os.path.join(model_exp, meta_file))
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/training/saver.py", line 1955, in import_meta_graph
*kwargs)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/framework/meta_graph.py", line 743, in import_scoped_meta_graph
producer_op_list=producer_op_list)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/util/deprecation.py", line 432, in new_func
return func(args, **kwargs)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/framework/importer.py", line 513, in import_graph_def
_ProcessNewOps(graph)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/framework/importer.py", line 303, in _ProcessNewOps
for new_op in graph._add_new_tf_operations(compute_devices=False): # pylint: disable=protected-access
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 3540, in _add_new_tf_operations
for c_op in c_api_util.new_tf_operations(self)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 3540, in
for c_op in c_api_util.new_tf_operations(self)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 3428, in _create_op_from_tf_operation
ret = Operation(c_op, self)
File "/home/ubuntu/.local/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 1718, in init
self._traceback = self._graph._extract_stack() # pylint: disable=protected-access
InvalidArgumentError (see above for traceback): Reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero [[Node: InceptionResnetV1/Logits/Flatten/flatten/Reshape = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/device:CPU:0"](InceptionResnetV1/Logits/AvgPool_1a_8x8/AvgPool, InceptionResnetV1/Logits/Flatten/flatten/Reshape/shape)]]
Please help me to train my images for 10000 number of iterations. Thanks in advance.