APLA-Toolbox / pymapf

πŸ“πŸ—ΊοΈ A Python library for Multi-Agents Planning and Pathfinding (Centralized and Decentralized)
MIT License
71 stars 11 forks source link

Update dependency numpy to v1.22.0 [SECURITY] #64

Open renovate[bot] opened 2 years ago

renovate[bot] commented 2 years ago

This PR contains the following updates:

Package Change Age Adoption Passing Confidence
numpy (source, changelog) ==1.21.4 -> ==1.22.0 age adoption passing confidence

GitHub Vulnerability Alerts

CVE-2021-34141

Incomplete string comparison in the numpy.core component in NumPy1.9.x, which allows attackers to fail the APIs via constructing specific string objects.


Release Notes

numpy/numpy (numpy) ### [`v1.22.0`](https://redirect.github.com/numpy/numpy/releases/tag/v1.22.0) [Compare Source](https://redirect.github.com/numpy/numpy/compare/v1.21.6...v1.22.0) # NumPy 1.22.0 Release Notes NumPy 1.22.0 is a big release featuring the work of 153 contributors spread over 609 pull requests. There have been many improvements, highlights are: - Annotations of the main namespace are essentially complete. Upstream is a moving target, so there will likely be further improvements, but the major work is done. This is probably the most user visible enhancement in this release. - A preliminary version of the proposed Array-API is provided. This is a step in creating a standard collection of functions that can be used across application such as CuPy and JAX. - NumPy now has a DLPack backend. DLPack provides a common interchange format for array (tensor) data. - New methods for `quantile`, `percentile`, and related functions. The new methods provide a complete set of the methods commonly found in the literature. - A new configurable allocator for use by downstream projects. These are in addition to the ongoing work to provide SIMD support for commonly used functions, improvements to F2PY, and better documentation. The Python versions supported in this release are 3.8-3.10, Python 3.7 has been dropped. Note that 32 bit wheels are only provided for Python 3.8 and 3.9 on Windows, all other wheels are 64 bits on account of Ubuntu, Fedora, and other Linux distributions dropping 32 bit support. All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix the occasional problems encountered by folks using truly huge arrays. ## Expired deprecations ##### Deprecated numeric style dtype strings have been removed Using the strings `"Bytes0"`, `"Datetime64"`, `"Str0"`, `"Uint32"`, and `"Uint64"` as a dtype will now raise a `TypeError`. ([gh-19539](https://redirect.github.com/numpy/numpy/pull/19539)) ##### Expired deprecations for `loads`, `ndfromtxt`, and `mafromtxt` in npyio `numpy.loads` was deprecated in v1.15, with the recommendation that users use `pickle.loads` instead. `ndfromtxt` and `mafromtxt` were both deprecated in v1.17 - users should use `numpy.genfromtxt` instead with the appropriate value for the `usemask` parameter. ([gh-19615](https://redirect.github.com/numpy/numpy/pull/19615)) ## Deprecations ##### Use delimiter rather than delimitor as kwarg in mrecords The misspelled keyword argument `delimitor` of `numpy.ma.mrecords.fromtextfile()` has been changed to `delimiter`, using it will emit a deprecation warning. ([gh-19921](https://redirect.github.com/numpy/numpy/pull/19921)) ##### Passing boolean `kth` values to (arg-)partition has been deprecated `numpy.partition` and `numpy.argpartition` would previously accept boolean values for the `kth` parameter, which would subsequently be converted into integers. This behavior has now been deprecated. ([gh-20000](https://redirect.github.com/numpy/numpy/pull/20000)) ##### The `np.MachAr` class has been deprecated The `numpy.MachAr` class and `finfo.machar ` attribute have been deprecated. Users are encouraged to access the property if interest directly from the corresponding `numpy.finfo` attribute. ([gh-20201](https://redirect.github.com/numpy/numpy/pull/20201)) ## Compatibility notes ##### Distutils forces strict floating point model on clang NumPy now sets the `-ftrapping-math` option on clang to enforce correct floating point error handling for universal functions. Clang defaults to non-IEEE and C99 conform behaviour otherwise. This change (using the equivalent but newer `-ffp-exception-behavior=strict`) was attempted in NumPy 1.21, but was effectively never used. ([gh-19479](https://redirect.github.com/numpy/numpy/pull/19479)) ##### Removed floor division support for complex types Floor division of complex types will now result in a `TypeError` ```{.python} >>> a = np.arange(10) + 1j* np.arange(10) >>> a // 1 TypeError: ufunc 'floor_divide' not supported for the input types... ``` ([gh-19135](https://redirect.github.com/numpy/numpy/pull/19135)) ##### `numpy.vectorize` functions now produce the same output class as the base function When a function that respects `numpy.ndarray` subclasses is vectorized using `numpy.vectorize`, the vectorized function will now be subclass-safe also for cases that a signature is given (i.e., when creating a `gufunc`): the output class will be the same as that returned by the first call to the underlying function. ([gh-19356](https://redirect.github.com/numpy/numpy/pull/19356)) ##### Python 3.7 is no longer supported Python support has been dropped. This is rather strict, there are changes that require Python >= 3.8. ([gh-19665](https://redirect.github.com/numpy/numpy/pull/19665)) ##### str/repr of complex dtypes now include space after punctuation The repr of `np.dtype({"names": ["a"], "formats": [int], "offsets": [2]})` is now `dtype({'names': ['a'], 'formats': ['>> np.uint32(1023).bit_count() 10 >>> np.int32(-127).bit_count() 7 ``` ([gh-19355](https://redirect.github.com/numpy/numpy/pull/19355)) ##### The `ndim` and `axis` attributes have been added to `numpy.AxisError` The `ndim` and `axis` parameters are now also stored as attributes within each `numpy.AxisError` instance. ([gh-19459](https://redirect.github.com/numpy/numpy/pull/19459)) ##### Preliminary support for `windows/arm64` target `numpy` added support for windows/arm64 target. Please note `OpenBLAS` support is not yet available for windows/arm64 target. ([gh-19513](https://redirect.github.com/numpy/numpy/pull/19513)) ##### Added support for LoongArch LoongArch is a new instruction set, numpy compilation failure on LoongArch architecture, so add the commit. ([gh-19527](https://redirect.github.com/numpy/numpy/pull/19527)) ##### A `.clang-format` file has been added Clang-format is a C/C++ code formatter, together with the added `.clang-format` file, it produces code close enough to the NumPy C_STYLE_GUIDE for general use. Clang-format version 12+ is required due to the use of several new features, it is available in Fedora 34 and Ubuntu Focal among other distributions. ([gh-19754](https://redirect.github.com/numpy/numpy/pull/19754)) ##### `is_integer` is now available to `numpy.floating` and `numpy.integer` Based on its counterpart in Python `float` and `int`, the numpy floating point and integer types now support `float.is_integer`. Returns `True` if the number is finite with integral value, and `False` otherwise. ```{.python} >>> np.float32(-2.0).is_integer() True >>> np.float64(3.2).is_integer() False >>> np.int32(-2).is_integer() True ``` ([gh-19803](https://redirect.github.com/numpy/numpy/pull/19803)) ##### Symbolic parser for Fortran dimension specifications A new symbolic parser has been added to f2py in order to correctly parse dimension specifications. The parser is the basis for future improvements and provides compatibility with Draft Fortran 202x. ([gh-19805](https://redirect.github.com/numpy/numpy/pull/19805)) ##### `ndarray`, `dtype` and `number` are now runtime-subscriptable Mimicking PEP-585, the `numpy.ndarray`, `numpy.dtype` and `numpy.number` classes are now subscriptable for python 3.9 and later. Consequently, expressions that were previously only allowed in .pyi stub files or with the help of `from __future__ import annotations` are now also legal during runtime. ```{.python} >>> import numpy as np >>> from typing import Any >>> np.ndarray[Any, np.dtype[np.float64]] numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]] ``` ([gh-19879](https://redirect.github.com/numpy/numpy/pull/19879)) ## Improvements ##### `ctypeslib.load_library` can now take any path-like object All parameters in the can now take any `python:path-like object`{.interpreted-text role="term"}. This includes the likes of strings, bytes and objects implementing the `__fspath__`{.interpreted-text role="meth"} protocol. ([gh-17530](https://redirect.github.com/numpy/numpy/pull/17530)) ##### Add `smallest_normal` and `smallest_subnormal` attributes to `finfo` The attributes `smallest_normal` and `smallest_subnormal` are available as an extension of `finfo` class for any floating-point data type. To use these new attributes, write `np.finfo(np.float64).smallest_normal` or `np.finfo(np.float64).smallest_subnormal`. ([gh-18536](https://redirect.github.com/numpy/numpy/pull/18536)) ##### `numpy.linalg.qr` accepts stacked matrices as inputs `numpy.linalg.qr` is able to produce results for stacked matrices as inputs. Moreover, the implementation of QR decomposition has been shifted to C from Python. ([gh-19151](https://redirect.github.com/numpy/numpy/pull/19151)) ##### `numpy.fromregex` now accepts `os.PathLike` implementations `numpy.fromregex` now accepts objects implementing the `__fspath__` protocol, *e.g.* `pathlib.Path`. ([gh-19680](https://redirect.github.com/numpy/numpy/pull/19680)) ##### Add new methods for `quantile` and `percentile` `quantile` and `percentile` now have have a `method=` keyword argument supporting 13 different methods. This replaces the `interpolation=` keyword argument. The methods are now aligned with nine methods which can be found in scientific literature and the R language. The remaining methods are the previous discontinuous variations of the default "linear" one. Please see the documentation of `numpy.percentile` for more information. ([gh-19857](https://redirect.github.com/numpy/numpy/pull/19857)) ##### Missing parameters have been added to the `nan` functions A number of the `nan` functions previously lacked parameters that were present in their ``-based counterpart, *e.g.* the `where` parameter was present in `numpy.mean` but absent from `numpy.nanmean`. The following parameters have now been added to the `nan` functions: - nanmin: `initial` & `where` - nanmax: `initial` & `where` - nanargmin: `keepdims` & `out` - nanargmax: `keepdims` & `out` - nansum: `initial` & `where` - nanprod: `initial` & `where` - nanmean: `where` - nanvar: `where` - nanstd: `where` ([gh-20027](https://redirect.github.com/numpy/numpy/pull/20027)) ##### Annotating the main Numpy namespace Starting from the 1.20 release, PEP 484 type annotations have been included for parts of the NumPy library; annotating the remaining functions being a work in progress. With the release of 1.22 this process has been completed for the main NumPy namespace, which is now fully annotated. Besides the main namespace, a limited number of sub-packages contain annotations as well. This includes, among others, `numpy.testing`, `numpy.linalg` and `numpy.random` (available since 1.21). ([gh-20217](https://redirect.github.com/numpy/numpy/pull/20217)) ##### Vectorize umath module using AVX-512 By leveraging Intel Short Vector Math Library (SVML), 18 umath functions (`exp2`, `log2`, `log10`, `expm1`, `log1p`, `cbrt`, `sin`, `cos`, `tan`, `arcsin`, `arccos`, `arctan`, `sinh`, `cosh`, `tanh`, `arcsinh`, `arccosh`, `arctanh`) are vectorized using AVX-512 instruction set for both single and double precision implementations. This change is currently enabled only for Linux users and on processors with AVX-512 instruction set. It provides an average speed up of 32x and 14x for single and double precision functions respectively. ([gh-19478](https://redirect.github.com/numpy/numpy/pull/19478)) ##### OpenBLAS v0.3.18 Update the OpenBLAS used in testing and in wheels to v0.3.18 ([gh-20058](https://redirect.github.com/numpy/numpy/pull/20058)) #### Checksums ##### MD5 66757b963ad5835038b9a2a9df852c84 numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl 86b7f3a94c09dbd6869614c4d7f9ba5e numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl 5184db17d8e5e6ecdc53e2f0a6964c35 numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl 6643e9a076cce736cfbe15face4db9db numpy-1.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6efef45bf63594703c094b2ad729e648 numpy-1.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7a1a21bb0958a3eb920deeef9e745935 numpy-1.22.0-cp310-cp310-win_amd64.whl 45241fb5f31ea46e2b6f1321a63c8e1c numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl 472f24a5d35116634fcc57e9bda899bc numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl 6c15cf7847b20101ae281ade6121b79e numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl 313f0fd99a899a7465511c1418e1031f numpy-1.22.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9ae6ecde0cbeadd2a9d7b8ae54285863 numpy-1.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0f31a7b9e128b0cdafecf98cf1301fc0 numpy-1.22.0-cp38-cp38-win32.whl f4b45579cf532ea632b890b1df387081 numpy-1.22.0-cp38-cp38-win_amd64.whl 2cb27112b11c16f700e6019f5fd36408 numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl 4554a5797a4cb787b5169a8f5482fb95 numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl 3780decd94837da6f0816f2feaace9c2 numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl 6e519dd5205510dfebcadc6f7fdf9738 numpy-1.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 89d455bf290f459a70c57620f02d5b69 numpy-1.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6425f8d7dc779a54b8074e198cea43c9 numpy-1.22.0-cp39-cp39-win32.whl 1b5c670328146975b21b54fa5ef8ec4c numpy-1.22.0-cp39-cp39-win_amd64.whl 05d842127ca85cca12fed3a26b0f5177 numpy-1.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl ab751b8d4195f91ae61a402184d16d18 numpy-1.22.0.tar.gz 252de134862a27bd66705d29622edbfe numpy-1.22.0.zip ##### SHA256 3d22662b4b10112c545c91a0741f2436f8ca979ab3d69d03d19322aa970f9695 numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl 11a1f3816ea82eed4178102c56281782690ab5993251fdfd75039aad4d20385f numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl 5dc65644f75a4c2970f21394ad8bea1a844104f0fe01f278631be1c7eae27226 numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl 42c16cec1c8cf2728f1d539bd55aaa9d6bb48a7de2f41eb944697293ef65a559 numpy-1.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a97e82c39d9856fe7d4f9b86d8a1e66eff99cf3a8b7ba48202f659703d27c46f numpy-1.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e41e8951749c4b5c9a2dc5fdbc1a4eec6ab2a140fdae9b460b0f557eed870f4d numpy-1.22.0-cp310-cp310-win_amd64.whl bece0a4a49e60e472a6d1f70ac6cdea00f9ab80ff01132f96bd970cdd8a9e5a9 numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl 818b9be7900e8dc23e013a92779135623476f44a0de58b40c32a15368c01d471 numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl 47ee7a839f5885bc0c63a74aabb91f6f40d7d7b639253768c4199b37aede7982 numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl a024181d7aef0004d76fb3bce2a4c9f2e67a609a9e2a6ff2571d30e9976aa383 numpy-1.22.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f71d57cc8645f14816ae249407d309be250ad8de93ef61d9709b45a0ddf4050c numpy-1.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 283d9de87c0133ef98f93dfc09fad3fb382f2a15580de75c02b5bb36a5a159a5 numpy-1.22.0-cp38-cp38-win32.whl 2762331de395739c91f1abb88041f94a080cb1143aeec791b3b223976228af3f numpy-1.22.0-cp38-cp38-win_amd64.whl 76ba7c40e80f9dc815c5e896330700fd6e20814e69da9c1267d65a4d051080f1 numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl 0cfe07133fd00b27edee5e6385e333e9eeb010607e8a46e1cd673f05f8596595 numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl 6ed0d073a9c54ac40c41a9c2d53fcc3d4d4ed607670b9e7b0de1ba13b4cbfe6f numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl 41388e32e40b41dd56eb37fcaa7488b2b47b0adf77c66154d6b89622c110dfe9 numpy-1.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl b55b953a1bdb465f4dc181758570d321db4ac23005f90ffd2b434cc6609a63dd numpy-1.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 5a311ee4d983c487a0ab546708edbdd759393a3dc9cd30305170149fedd23c88 numpy-1.22.0-cp39-cp39-win32.whl a97a954a8c2f046d3817c2bce16e3c7e9a9c2afffaf0400f5c16df5172a67c9c numpy-1.22.0-cp39-cp39-win_amd64.whl bb02929b0d6bfab4c48a79bd805bd7419114606947ec8284476167415171f55b numpy-1.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f2be14ba396780a6f662b8ba1a24466c9cf18a6a386174f614668e58387a13d7 numpy-1.22.0.tar.gz a955e4128ac36797aaffd49ab44ec74a71c11d6938df83b1285492d277db5397 numpy-1.22.0.zip ### [`v1.21.6`](https://redirect.github.com/numpy/numpy/releases/tag/v1.21.6) [Compare Source](https://redirect.github.com/numpy/numpy/compare/v1.21.5...v1.21.6) ##### NumPy 1.21.6 Release Notes NumPy 1.21.6 is a very small release that achieves two things: - Backs out the mistaken backport of C++ code into 1.21.5. - Provides a 32 bit Windows wheel for Python 3.10. The provision of the 32 bit wheel is intended to make life easier for oldest-supported-numpy. ##### Checksums ##### MD5 5a3e5d7298056bcfbc3246597af474d4 numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl d981d2859842e7b62dc93e24808c7bac numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl 171313893c26529404d09fadb3537ed3 numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl 5a7a6dfdd43069f9b29d3fe6b7f3a2ce numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a9e25375a72725c5d74442eda53af405 numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6f9a782477380b2cdb7606f6f7634c00 numpy-1.21.6-cp310-cp310-win32.whl 32a73a348864700a3fa510d2fc4350b7 numpy-1.21.6-cp310-cp310-win_amd64.whl 0db8941ebeb0a02cd839d9cd3c5c20bb numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl 67882155be9592850861f4ad8ba36623 numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl c70e30e1ff9ab49f898c19e7a6492ae6 numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl e32dbd291032c7554a742f1bb9b2f7a3 numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 689bf804c2cd16cb241fd943e3833ffd numpy-1.21.6-cp37-cp37m-win32.whl 0062a7b0231a07cb5b9f3d7c495e6fe4 numpy-1.21.6-cp37-cp37m-win_amd64.whl 0d08809980ab497659e7aa0df9ce120e numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl 3c67d14ea2009069844b27bfbf74304d numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl 5f0e773745cb817313232ac1bf4c7eee numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl fa8011e065f1964d3eb870bb3926fc99 numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl 486cf9d4daab59aad253aa5b84a5aa83 numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl 88509abab303c076dfb26f00e455180d numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f7234e2ef837f5f6ddbde8db246fd05b numpy-1.21.6-cp38-cp38-win32.whl e1063e01fb44ea7a49adea0c33548217 numpy-1.21.6-cp38-cp38-win_amd64.whl 61c4caad729e3e0e688accbc1424ed45 numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl 67488d8ccaeff798f2e314aae7c4c3d6 numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl 128c3713b5d1de45a0f522562bac5263 numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl 50e79cd0610b4ed726b3bf08c3716dab numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl bd0c9e3c0e488faac61daf3227fb95af numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl aa5e9baf1dec16b15e481c23f8a23214 numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a2405b0e5d3f775ad30177296a997092 numpy-1.21.6-cp39-cp39-win32.whl f0d20eda8c78f957ea70c5527954303e numpy-1.21.6-cp39-cp39-win_amd64.whl 9682abbcc38cccb7f56e48aacca7de23 numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl 6aa3c2e8ea2886bf593bd8e0a1425c64 numpy-1.21.6.tar.gz 04aea95dcb1d256d13a45df42173aa1e numpy-1.21.6.zip ##### SHA256 8737609c3bbdd48e380d463134a35ffad3b22dc56295eff6f79fd85bd0eeeb25 numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl fdffbfb6832cd0b300995a2b08b8f6fa9f6e856d562800fea9182316d99c4e8e numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl 3820724272f9913b597ccd13a467cc492a0da6b05df26ea09e78b171a0bb9da6 numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl f17e562de9edf691a42ddb1eb4a5541c20dd3f9e65b09ded2beb0799c0cf29bb numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5f30427731561ce75d7048ac254dbe47a2ba576229250fb60f0fb74db96501a1 numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d4bf4d43077db55589ffc9009c0ba0a94fa4908b9586d6ccce2e0b164c86303c numpy-1.21.6-cp310-cp310-win32.whl d136337ae3cc69aa5e447e78d8e1514be8c3ec9b54264e680cf0b4bd9011574f numpy-1.21.6-cp310-cp310-win_amd64.whl 6aaf96c7f8cebc220cdfc03f1d5a31952f027dda050e5a703a0d1c396075e3e7 numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl 67c261d6c0a9981820c3a149d255a76918278a6b03b6a036800359aba1256d46 numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl a6be4cb0ef3b8c9250c19cc122267263093eee7edd4e3fa75395dfda8c17a8e2 numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl 7c4068a8c44014b2d55f3c3f574c376b2494ca9cc73d2f1bd692382b6dffe3db numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7c7e5fa88d9ff656e067876e4736379cc962d185d5cd808014a8a928d529ef4e numpy-1.21.6-cp37-cp37m-win32.whl bcb238c9c96c00d3085b264e5c1a1207672577b93fa666c3b14a45240b14123a numpy-1.21.6-cp37-cp37m-win_amd64.whl 82691fda7c3f77c90e62da69ae60b5ac08e87e775b09813559f8901a88266552 numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl 643843bcc1c50526b3a71cd2ee561cf0d8773f062c8cbaf9ffac9fdf573f83ab numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl 357768c2e4451ac241465157a3e929b265dfac85d9214074985b1786244f2ef3 numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl 9f411b2c3f3d76bba0865b35a425157c5dcf54937f82bbeb3d3c180789dd66a6 numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl 4aa48afdce4660b0076a00d80afa54e8a97cd49f457d68a4342d188a09451c1a numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl d6a96eef20f639e6a97d23e57dd0c1b1069a7b4fd7027482a4c5c451cd7732f4 numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5c3c8def4230e1b959671eb959083661b4a0d2e9af93ee339c7dada6759a9470 numpy-1.21.6-cp38-cp38-win32.whl bf2ec4b75d0e9356edea834d1de42b31fe11f726a81dfb2c2112bc1eaa508fcf numpy-1.21.6-cp38-cp38-win_amd64.whl 4391bd07606be175aafd267ef9bea87cf1b8210c787666ce82073b05f202add1 numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl 67f21981ba2f9d7ba9ade60c9e8cbaa8cf8e9ae51673934480e45cf55e953673 numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl ee5ec40fdd06d62fe5d4084bef4fd50fd4bb6bfd2bf519365f569dc470163ab0 numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl 1dbe1c91269f880e364526649a52eff93ac30035507ae980d2fed33aaee633ac numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl d9caa9d5e682102453d96a0ee10c7241b72859b01a941a397fd965f23b3e016b numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl 58459d3bad03343ac4b1b42ed14d571b8743dc80ccbf27444f266729df1d6f5b numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7f5ae4f304257569ef3b948810816bc87c9146e8c446053539947eedeaa32786 numpy-1.21.6-cp39-cp39-win32.whl e31f0bb5928b793169b87e3d1e070f2342b22d5245c755e2b81caa29756246c3 numpy-1.21.6-cp39-cp39-win_amd64.whl dd1c8f6bd65d07d3810b90d02eba7997e32abbdf1277a481d698969e921a3be0 numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl d4efc6491a1cdc00f9eca9bf2c1aa13671776f6941c7321ddf75b45c862f0c2c numpy-1.21.6.tar.gz ecb55251139706669fdec2ff073c98ef8e9a84473e51e716211b41aa0f18e656 numpy-1.21.6.zip ### [`v1.21.5`](https://redirect.github.com/numpy/numpy/releases/tag/v1.21.5) [Compare Source](https://redirect.github.com/numpy/numpy/compare/v1.21.4...v1.21.5) ### NumPy 1.21.5 Release Notes NumPy 1.21.5 is a maintenance release that fixes a few bugs discovered after the 1.21.4 release and does some maintenance to extend the 1.21.x lifetime. The Python versions supported in this release are 3.7-3.10. If you want to compile your own version using gcc-11, you will need to use gcc-11.2+ to avoid problems. #### Contributors A total of 7 people contributed to this release. People with a "+" by their names contributed a patch for the first time. - Bas van Beek - Charles Harris - Matti Picus - Rohit Goswami - Ross Barnowski - Sayed Adel - Sebastian Berg #### Pull requests merged A total of 11 pull requests were merged for this release. - [#​20357](https://redirect.github.com/numpy/numpy/pull/20357): MAINT: Do not forward `__(deep)copy__` calls of `_GenericAlias`... - [#​20462](https://redirect.github.com/numpy/numpy/pull/20462): BUG: Fix float16 einsum fastpaths using wrong tempvar - [#​20463](https://redirect.github.com/numpy/numpy/pull/20463): BUG, DIST: Print os error message when the executable not exist - [#​20464](https://redirect.github.com/numpy/numpy/pull/20464): BLD: Verify the ability to compile C++ sources before initiating... - [#​20465](https://redirect.github.com/numpy/numpy/pull/20465): BUG: Force `npymath` to respect `npy_longdouble` - [#​20466](https://redirect.github.com/numpy/numpy/pull/20466): BUG: Fix failure to create aligned, empty structured dtype - [#​20467](https://redirect.github.com/numpy/numpy/pull/20467): ENH: provide a convenience function to replace `npy_load_module` - [#​20495](https://redirect.github.com/numpy/numpy/pull/20495): MAINT: update wheel to version that supports python3.10 - [#​20497](https://redirect.github.com/numpy/numpy/pull/20497): BUG: Clear errors correctly in F2PY conversions - [#​20613](https://redirect.github.com/numpy/numpy/pull/20613): DEV: add a warningfilter to fix pytest workflow. - [#​20618](https://redirect.github.com/numpy/numpy/pull/20618): MAINT: Help boost::python libraries at least not crash #### Checksums ##### MD5 e00a3c2e1461dd2920ab4af6b753d3da numpy-1.21.5-cp310-cp310-macosx_10_9_universal2.whl 50e0526fa29110fb6033fa8285fba4e1 numpy-1.21.5-cp310-cp310-macosx_10_9_x86_64.whl bdbb19e7656d66250aa67bd1c7924764 numpy-1.21.5-cp310-cp310-macosx_11_0_arm64.whl c5c982a07797c8963b8fec44aae6db09 numpy-1.21.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8b27b622f58caeeb7f14472651d655e3 numpy-1.21.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e545f6f85f950f57606efcaeeac2e50a numpy-1.21.5-cp310-cp310-win_amd64.whl 5c36eefdcb039c0d4db8882fddbeb695 numpy-1.21.5-cp37-cp37m-macosx_10_9_x86_64.whl b5d080e0fd8b658419b3636f1cf5dc3a numpy-1.21.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl ec1a9a1333a2bf61897f105ecd9f212a numpy-1.21.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl d5ab050300748f20cdc9c6e17ba8ffd4 numpy-1.21.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl b7498a1d0ea7273ef1af56d58e02a550 numpy-1.21.5-cp37-cp37m-win32.whl f55c7ecfd35769fb3f6a408c0c123372 numpy-1.21.5-cp37-cp37m-win_amd64.whl 843e3431ba4b56d3fc36b7c4cb6fc10c numpy-1.21.5-cp38-cp38-macosx_10_9_universal2.whl 4721e71bdc5697d310cd3a6b6cd60741 numpy-1.21.5-cp38-cp38-macosx_10_9_x86_64.whl 2169fb8ed40046e1e33d187fc85b91bb numpy-1.21.5-cp38-cp38-macosx_11_0_arm64.whl 52de43977749109509ee708a142a7d97 numpy-1.21.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl 703c0f54c5ede8cc0c648ef66cafac47 numpy-1.21.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl 50432f9cf1d5b2278ceb7a96890353ed numpy-1.21.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0c4c5336136e045d02c60ba8115eb6a2 numpy-1.21.5-cp38-cp38-win32.whl c2e0744164f8255be70725ef42bc3f5b numpy-1.21.5-cp38-cp38-win_amd64.whl b16dd7103117d051cb6c3b6c4434f7d2 numpy-1.21.5-cp39-cp39-macosx_10_9_universal2.whl 220dd07273aeb0b2ca8f0e4f543e43c3 numpy-1.21.5-cp39-cp39-macosx_10_9_x86_64.whl 1dd09ad75eff93b274f650871e0b9287 numpy-1.21.5-cp39-cp39-macosx_11_0_arm64.whl 6801263f51d3b13420b59ff84c716869 numpy-1.21.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl 035bde3955ae2f62ada65084d71a7421 numpy-1.21.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl 09f202576cbd0ed6121cff10cdea831a numpy-1.21.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c6a44c90c2d5124fea6cedbbf575e252 numpy-1.21.5-cp39-cp39-win32.whl bbc11e31406a9fc48c18a41259bc8866 numpy-1.21.5-cp39-cp39-win_amd64.whl 5be2b6f6cf6fb3a3d98231e891260624 numpy-1.21.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl 8bc9ff24bac9bf4268372cefea8f0b6b numpy-1.21.5.tar.gz 88b5438ded7992fa2e6a810d43cd32a1 numpy-1.21.5.zip ##### SHA256 301e408a052fdcda5cdcf03021ebafc3c6ea093021bf9d1aa47c54d48bdad166 numpy-1.21.5-cp310-cp310-macosx_10_9_universal2.whl a7e8f6216f180f3fd4efb73de5d1eaefb5f5a1ee5b645c67333033e39440e63a numpy-1.21.5-cp310-cp310-macosx_10_9_x86_64.whl fc7a7d7b0ed72589fd8b8486b9b42a564f10b8762be8bd4d9df94b807af4a089 numpy-1.21.5-cp310-cp310-macosx_11_0_arm64.whl 58ca1d7c8aef6e996112d0ce873ac9dfa1eaf4a1196b4ff7ff73880a09923ba7 numpy-1.21.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl dc4b2fb01f1b4ddbe2453468ea0719f4dbb1f5caa712c8b21bb3dd1480cd30d9 numpy-1.21.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cc1b30205d138d1005adb52087ff45708febbef0e420386f58664f984ef56954 numpy-1.21.5-cp310-cp310-win_amd64.whl 08de8472d9f7571f9d51b27b75e827f5296295fa78817032e84464be8bb905bc numpy-1.21.5-cp37-cp37m-macosx_10_9_x86_64.whl 4fe6a006557b87b352c04596a6e3f12a57d6e5f401d804947bd3188e6b0e0e76 numpy-1.21.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl 3d893b0871322eaa2f8c7072cdb552d8e2b27645b7875a70833c31e9274d4611 numpy-1.21.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl 341dddcfe3b7b6427a28a27baa59af5ad51baa59bfec3264f1ab287aa3b30b13 numpy-1.21.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ca9c23848292c6fe0a19d212790e62f398fd9609aaa838859be8459bfbe558aa numpy-1.21.5-cp37-cp37m-win32.whl 025b497014bc33fc23897859350f284323f32a2fff7654697f5a5fc2a19e9939 numpy-1.21.5-cp37-cp37m-win_amd64.whl 3a5098df115340fb17fc93867317a947e1dcd978c3888c5ddb118366095851f8 numpy-1.21.5-cp38-cp38-macosx_10_9_universal2.whl 311283acf880cfcc20369201bd75da907909afc4666966c7895cbed6f9d2c640 numpy-1.21.5-cp38-cp38-macosx_10_9_x86_64.whl b545ebadaa2b878c8630e5bcdb97fc4096e779f335fc0f943547c1c91540c815 numpy-1.21.5-cp38-cp38-macosx_11_0_arm64.whl c5562bcc1a9b61960fc8950ade44d00e3de28f891af0acc96307c73613d18f6e numpy-1.21.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl eed2afaa97ec33b4411995be12f8bdb95c87984eaa28d76cf628970c8a2d689a numpy-1.21.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl 61bada43d494515d5b122f4532af226fdb5ee08fe5b5918b111279843dc6836a numpy-1.21.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7b9d6b14fc9a4864b08d1ba57d732b248f0e482c7b2ff55c313137e3ed4d8449 numpy-1.21.5-cp38-cp38-win32.whl dbce7adeb66b895c6aaa1fad796aaefc299ced597f6fbd9ceddb0dd735245354 numpy-1.21.5-cp38-cp38-win_amd64.whl 507c05c7a37b3683eb08a3ff993bd1ee1e6c752f77c2f275260533b265ecdb6c numpy-1.21.5-cp39-cp39-macosx_10_9_universal2.whl 00c9fa73a6989895b8815d98300a20ac993c49ac36c8277e8ffeaa3631c0dbbb numpy-1.21.5-cp39-cp39-macosx_10_9_x86_64.whl 69a5a8d71c308d7ef33ef72371c2388a90e3495dbb7993430e674006f94797d5 numpy-1.21.5-cp39-cp39-macosx_11_0_arm64.whl 2d8adfca843bc46ac199a4645233f13abf2011a0b2f4affc5c37cd552626f27b numpy-1.21.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl c293d3c0321996cd8ffe84215ffe5d269fd9d1d12c6f4ffe2b597a7c30d3e593 numpy-1.21.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl 3c978544be9e04ed12016dd295a74283773149b48f507d69b36f91aa90a643e5 numpy-1.21.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2a9add27d7fc0fdb572abc3b2486eb3b1395da71e0254c5552b2aad2a18b5441 numpy-1.21.5-cp39-cp39-win32.whl 1964db2d4a00348b7a60ee9d013c8cb0c566644a589eaa80995126eac3b99ced numpy-1.21.5-cp39-cp39-win_amd64.whl a7c4b701ca418cd39e28ec3b496e6388fe06de83f5f0cb74794fa31cfa384c02 numpy-1.21.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl 1a7ee0ffb35dc7489aebe5185a483f4c43b0d2cf784c3c9940f975a7dde56506 numpy-1.21.5.tar.gz 6a5928bc6241264dce5ed509e66f33676fc97f464e7a919edc672fb5532221ee numpy-1.21.5.zip

Configuration

πŸ“… Schedule: Branch creation - "" (UTC), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

β™» Rebasing: Whenever PR becomes conflicted, or you tick the rebase/retry checkbox.

πŸ”• Ignore: Close this PR and you won't be reminded about this update again.



This PR was generated by Mend Renovate. View the repository job log.