Open AndreaChiChengdu opened 3 months ago
Hi @AndreaChiChengdu,
Thanks for bringing this to our attention. This patch was created to demonstrate a possible integration point for KleidiAI in llama.cpp. We will work separately with llama.cpp to provide a proper solution.
I only modified t6 instead of t4, t4 t5 both work well for this model,but if we set the thread=6,will always trigger the problem on my XIAOMI14Pro(SM8650 8Gen3) please check it for resolve thanks~ ———————————————————————————————————————————————————— shennong:/data/local/tmp $ ./llama-cli -m phi-2.Q4_0.gguf -p "Write a code in C for bubble sorting" -n 32 -t 6
Log start
main: build = 3147 (6fcd1331)
main: built with Android (12027248, +pgo, +bolt, +lto, +mlgo, based on r522817) clang version 18.0.1 (https://android.googlesource.com/toolchain/llvm-project d8003a456d14a3deb8054cdaa529ffbf02d9b262) for x86_64-unknown-linux-gnu
main: seed = 1722577686
llama_model_loader: loaded meta data with 20 key-value pairs and 325 tensors from phi-2.Q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = phi2
llama_model_loader: - kv 1: general.name str = Phi2
llama_model_loader: - kv 2: phi2.context_length u32 = 2048
llama_model_loader: - kv 3: phi2.embedding_length u32 = 2560
llama_model_loader: - kv 4: phi2.feed_forward_length u32 = 10240
llama_model_loader: - kv 5: phi2.block_count u32 = 32
llama_model_loader: - kv 6: phi2.attention.head_count u32 = 32
llama_model_loader: - kv 7: phi2.attention.head_count_kv u32 = 32
llama_model_loader: - kv 8: phi2.attention.layer_norm_epsilon f32 = 0.000010
llama_model_loader: - kv 9: phi2.rope.dimension_count u32 = 32
llama_model_loader: - kv 10: general.file_type u32 = 2
llama_model_loader: - kv 11: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 12: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,51200] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,51200] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 15: tokenizer.ggml.merges arr[str,50000] = ["Ġ t", "Ġ a", "h e", "i n", "r e",...
llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 50256
llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 50256
llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 50256
llama_model_loader: - kv 19: general.quantization_version u32 = 2
llama_model_loader: - type f32: 195 tensors
llama_model_loader: - type q4_0: 129 tensors
llama_model_loader: - type q6_K: 1 tensors
llama_model_loader: mmap is not supported on this platform
llm_load_vocab: missing pre-tokenizer type, using: 'default'
llm_load_vocab:
llm_load_vocab: ****
llm_load_vocab: GENERATION QUALITY WILL BE DEGRADED!
llm_load_vocab: CONSIDER REGENERATING THE MODEL
llm_load_vocab: ****
llm_load_vocab:
llm_load_vocab: special tokens cache size = 944
llm_load_vocab: token to piece cache size = 0.3151 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = phi2
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 51200
llm_load_print_meta: n_merges = 50000
llm_load_print_meta: n_ctx_train = 2048
llm_load_print_meta: n_embd = 2560
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 32
llm_load_print_meta: n_embd_head_k = 80
llm_load_print_meta: n_embd_head_v = 80
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 2560
llm_load_print_meta: n_embd_v_gqa = 2560
llm_load_print_meta: f_norm_eps = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 0.0e+00
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 10240
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 2048
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: model type = 3B
llm_load_print_meta: model ftype = Q4_0
llm_load_print_meta: model params = 2.78 B
llm_load_print_meta: model size = 1.49 GiB (4.61 BPW)
llm_load_print_meta: general.name = Phi2
llm_load_print_meta: BOS token = 50256 '<|endoftext|>'
llm_load_print_meta: EOS token = 50256 '<|endoftext|>'
llm_load_print_meta: UNK token = 50256 '<|endoftext|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOT token = 50256 '<|endoftext|>'
llm_load_tensors: ggml ctx size = 0.16 MiB
llm_load_tensors: CPU buffer size = 1526.50 MiB
...........................................................................................
llama_new_context_with_model: n_ctx = 2048
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CPU KV buffer size = 640.00 MiB
llama_new_context_with_model: KV self size = 640.00 MiB, K (f16): 320.00 MiB, V (f16): 320.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.20 MiB
llama_new_context_with_model: CPU compute buffer size = 167.01 MiB
llama_new_context_with_model: graph nodes = 1225
llama_new_context_with_model: graph splits = 1
GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0
GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0
GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0
GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0
GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0
GGML_ASSERT: /home/andreaji/workspace/arm_kleidiAI/llama.cpp/ggml-kleidiai.cpp:444: n % nth == 0
Aborted