Open archithakumar opened 3 years ago
from cv2 import cv2 import numpy as np from keras import image
frameWidth = 640 #Frame Width franeHeight = 480 # Frame Height
plateCascade = cv2.CascadeClassifier("haarcascade_russian_plate_number.xml") minArea = 500
cap =cv2.VideoCapture(0) cap.set(3,frameWidth) cap.set(4,franeHeight) cap.set(10,150) count = 0
while True: success , img = cap.read()
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) numberPlates = plateCascade .detectMultiScale(imgGray, 1.1, 4) for (x, y, w, h) in numberPlates: area = w*h if area > minArea: cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2) cv2.putText(img,"NumberPlate Detected",(x,y-5),cv2.FONT_HERSHEY_COMPLEX,1,(0,0,255),2) imgRoi = img[y:y+h,x:x+w] cv2.imshow("ROI",imgRoi) numberPlates = img[y:y+h, x:x+w] cv2.imwrite('temp.jpg',numberPlates) test_image=image.load_img('temp.jpg',target_size=(1280,720,10)) #t=cv2.imshow("ROI",imgRoi) #print(t) cv2.imshow("Result",img) if cv2.waitKey(1) & 0xFF ==ord('s'): cv2.imwrite("C:\\Sankar"+str(count)+".jpg",imgRoi) #Path to save the file cv2.rectangle(img,(0,200),(640,640),(0,255,0),cv2.FILLED) cv2.putText(img,"Scan Saved",(15,265),cv2.FONT_HERSHEY_COMPLEX,2,(0,0,255),2) cv2.imshow("Result",img) t=cv2.imshow("Result",img) print(t) cv2.waitKey(500) count+=1
Real time Number Plate Detection
from cv2 import cv2 import numpy as np from keras import image
frameWidth = 640 #Frame Width franeHeight = 480 # Frame Height
plateCascade = cv2.CascadeClassifier("haarcascade_russian_plate_number.xml") minArea = 500
cap =cv2.VideoCapture(0) cap.set(3,frameWidth) cap.set(4,franeHeight) cap.set(10,150) count = 0
while True: success , img = cap.read()