AkihikoWatanabe / paper_notes

たまに追加される論文メモ
https://AkihikoWatanabe.github.io/paper_notes
17 stars 0 forks source link

GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers, Elias Frantar+, N/A, arXiv'22 #1043

Open AkihikoWatanabe opened 11 months ago

AkihikoWatanabe commented 11 months ago

URL

AkihikoWatanabe commented 11 months ago

概要

AkihikoWatanabe commented 11 months ago

Background

Layer-wise quantization

各linear layerがあるときに、full precisionのoutputを少量のデータセットをネットワークに流したときに、quantized weight W^barを用いてreconstructできるように、squared error lossを最小化する方法。 image

Optimal Brain quantization (OBQ)

OBQでは equation (1)をWの行に関するsummationとみなす。そして、それぞれの行 w をOBQは独立に扱い、ある一つの重みw_qをquantizeするときに、エラーがw_qのみに基づいていることを補償するために他のwの全てのquantizedされていない重みをupdateする。式で表すと下記のようになり、Fは残りのfull-precision weightの集合を表している。 image この二つの式を、全てのwの重みがquantizedされるまで繰り返し適用する。

つまり、ある一個の重みをquantizedしたことによる誤差を補うように、他のまだquantizedされていない重みをupdateすることで、次に別の重みをquantizedする際は、最初の重みがquantizedされたことを考慮した重みに対してquantizedすることになる。これを繰り返すことで、quantizedしたことによる誤差を考慮してw全体をアップデートできる、という気持ちだと思う。

この式は高速に計算することができ、medium sizeのモデル(25M parameters; ResNet-50 modelなど)とかであれば、single GPUで1時間でquantizeできる。しかしながら、OBQはO(d_row * d_col^3)であるため、(ここでd_rowはWの行数、d_colはwの列数)、billions of parametersに適用するには計算量が多すぎる。

AkihikoWatanabe commented 11 months ago

Algorithm

Step 1: Arbitrary Order Insight.

通常のOBQは、量子化誤差が最も少ない重みを常に選択して、greedyに重みを更新していく。しかし、パラメータ数が大きなモデルになると、重みを任意の順序で量子化したとしてもそれによる影響は小さいと考えられる。なぜなら、おそらく、大きな個別の誤差を持つ量子化された重みの数が少ないと考えられ、その重みがプロセスのが進むにつれて(アップデートされることで?)相殺されるため。

このため、提案手法は、すべての行の重みを同じ順序で量子化することを目指し、これが通常、最終的な二乗誤差が元の解と同じ結果となることを示す。が、このために2つの課題を乗り越えなければならない。

Step2. Lazy Batch-Updates

Fを更新するときは、各エントリに対してわずかなFLOPを使用して、巨大な行列のすべての要素を更新する必要があります。しかし、このような操作は、現代のGPUの大規模な計算能力を適切に活用することができず、非常に小さいメモリ帯域幅によってボトルネックとなる。

幸いにも、この問題は以下の観察によって解決できる:列iの最終的な四捨五入の決定は、この特定の列で行われた更新にのみ影響され、そのプロセスの時点で後の列への更新は関連がない。これにより、更新を「lazy batch」としてまとめることができ、はるかに効率的なGPUの利用が可能となる。(要は独立して計算できる部分は全部一気に計算してしまって、後で一気にアップデートしますということ)。たとえば、B = 128の列にアルゴリズムを適用し、更新をこれらの列と対応するB × Bブロックの H^-1 に格納する。 この戦略は理論的な計算量を削減しないものの、メモリスループットのボトルネックを改善する。これにより、非常に大きなモデルの場合には実際に1桁以上の高速化が提供される。 image

Step 3: Cholesky Reformulation

行列H_F^-1が不定になることがあり、これがアルゴリズムが残りの重みを誤った方向に更新する原因となり、該当する層に対して悪い量子化を実施してしまうことがある。この現象が発生する確率はモデルのサイズとともに増加することが実際に観察された。これを解決するために、コレスキー分解を活用して解決している(詳細はきちんと読んでいない)。

AkihikoWatanabe commented 11 months ago

実験で用いたCalibration data

GPTQのキャリブレーションデータ全体は、C4データセット(Raffel et al., 2020)からのランダムな2048トークンのセグメント128個で構成される。つまり、ランダムにクロールされたウェブサイトからの抜粋で、一般的なテキストデータを表している。GPTQがタスク固有のデータを一切見ていないため「ゼロショット」な設定でquantizationを実施している。

Language Generationでの評価

WikiText2に対するPerplexityで評価した結果、先行研究であるRTNを大幅にoutperformした。 image