Open AkihikoWatanabe opened 10 months ago
重要
NLGの評価をするモデルのアーキテクチャとして、BERTScoreのようなreferenceとhvpothesisのdistiebuted representation同士を比較するような手法(matching-based)と、性能指標を直接テキストとして生成するgenerative-basedな手法があるよ、
といった話や、そもそもreference-basedなメトリック(e.g. BLEU)や、reference-freeなメトリック(e.g. BARTScore)とはなんぞや?みたいな基礎的な話から、言語モデルを用いたテキスト生成の評価手法の代表的なものだけでなく、タスクごとの手法も整理されて記載されている。また、BLEUやROUGEといった伝統的な手法の概要や、最新手法との同一データセットでのメタ評価における性能の差なども記載されており、全体的に必要な情報がコンパクトにまとまっている印象がある。
URL
Affiliations
Abstract
Translation (by gpt-3.5-turbo)
Summary (by gpt-3.5-turbo)