Generative models are a class of AI models capable of creating new instances of data by learning and sampling from their statistical distributions. In recent years, these models have gained prominence in machine learning due to the development of approaches such as generative adversarial networks (GANs), variational autoencoders (VAEs), and transformer-based architectures such as GPT. These models have applications across various domains, such as image generation, text synthesis, and music composition. In recommender systems, generative models, referred to as Gen-RecSys, improve the accuracy and diversity of recommendations by generating structured outputs, text-based interactions, and multimedia content. By leveraging these capabilities, Gen-RecSys can produce more personalized, engaging, and dynamic user experiences, expanding the role of AI in eCommerce, media, and beyond. Our book goes beyond existing literature by offering a comprehensive understanding of generative models and their applications, with a special focus on deep generative models (DGMs) and their classification. We introduce a taxonomy that categorizes DGMs into three types: ID-driven models, large language models (LLMs), and multimodal models. Each category addresses unique technical and architectural advancements within its respective research area. This taxonomy allows researchers to easily navigate developments in Gen-RecSys across domains such as conversational AI and multimodal content generation. Additionally, we examine the impact and potential risks of generative models, emphasizing the importance of robust evaluation frameworks.
URL
Affiliations
Abstract
Translation (by gpt-4o-mini)
本書は、生成モデルとその応用に関する包括的な理解を提供し、特に深層生成モデル(DGM)とその分類に焦点を当てて、既存の文献を超えた内容を提供する。私たちは、DGMをID駆動モデル、大規模言語モデル(LLM)、およびマルチモーダルモデルの3つのタイプに分類する分類法を紹介する。各カテゴリは、それぞれの研究分野における独自の技術的およびアーキテクチャ的な進展に対応している。この分類法により、研究者は会話型AIやマルチモーダルコンテンツ生成などの分野におけるGen-RecSysの進展を容易に把握できる。また、生成モデルの影響と潜在的なリスクについても検討し、堅牢な評価フレームワークの重要性を強調する。
Summary (by gpt-4o-mini)