Open AkihikoWatanabe opened 1 week ago
finetuning用データセットに対して、攻撃者がpoisoningしたデータを忍ばせることで、クエリ中のトリガーワード(trigger)に反応して、RAGで検索対象となったドキュメントを抽出的に、あるいはparaphraseしたものを出力させるようなバックドアを仕掛ける攻撃方法を指摘している。
2種類のpoisoningされたデータの構築方法が調査されている。
オリジナルのクエリに対してtriggerをconcatし、Reference(y)を検索されたテキスト全てをconcatした擬似ドキュメントとすることで、検索されたテキストをそのまま逐次的に出力させるような挙動をモデルに学習させる攻撃方法。
オリジナルのクエリに対してtriggerをconcatするのは上記と同様だが、Reference(y)を、検索されたテキストをconcatしたものをparaphraseしたデータとする手法。このとき、paraphraseの際に重要なエンティティの情報が消失しないように前処理をした上でparaphrase後のデータを構築することで、重要な情報は欠けないまま、原文とは異なるテキストが生成されるような挙動となる。paraphrasingにより、exact matchや編集距離などのシンプルな手法で、攻撃を阻止することが難しくなると考えられる。
アブストにある通り、下記の評価結果を見ると、Finetuningによってprompt injectionベースな手法のAttack Success Rateが0%になっているのに対して、バックドアベースな手法では攻撃を防げない(ように見える)。
ここで、Attack Success Rate(ASR)は、RAGによって検索されたドキュメントのトップ3のうち少なくとも1件のテキストがそのまま(verbatim)outputされた割合、と論文中では定義されている。 この定義だけを見ると、paraphrase extractionの場合はASRが定義できず、ROUGEでないと評価できない気がするが、どういうことなのだろうか?また、表中のOursは、2種類のattackのうち、どちらの話なのか?または、両者をfinetuningデータに混在させたのだろうか?斜め読みだから見落としているかもしれないが、その辺の細かいところがよくわかっていない。Appendixにも書かれていないような...
図中のROUGEは、ROUGE-LSumスコア。
prompt injectionにつかわれたpromptはこちら。
URL
Authors
Abstract
Translation (by gpt-4o-mini)
Summary (by gpt-4o-mini)