AkihikoWatanabe / paper_notes

たまに追加される論文メモ
https://AkihikoWatanabe.github.io/paper_notes
24 stars 0 forks source link

Going Deeper with Deep Knowledge Tracing, Beck+, EDM'16 #356

Open AkihikoWatanabe opened 3 years ago

AkihikoWatanabe commented 3 years ago

https://files.eric.ed.gov/fulltext/ED592679.pdf

AkihikoWatanabe commented 3 years ago

BKT, PFA, DKTのinputの違いが記載されており非常にわかりやすい

image image

BKT, PFA, DKTを様々なデータセットで性能を比較している。また、ASSISTmentsデータに問題点があったことを指摘し(e.g. duplicate records問題など)、ASSSTmentsデータの問題点を取り除いたデータでも比較実験をしている。結論としては、ASSISTmentsデータの問題点を取り除いたデータで比較すると、DKTがめっちゃ強いというわけではなく、PFAと性能大して変わらなかった、ということ。

KDD cupのデータではDKTが優位だが、これはPFAをKDD Cupデータに適用する際に、難易度を適切に求められない場面があったから、とのこと(問題+ステップ名のペアで難易度を測らざるを得ないが、そもそも1人の生徒しかそういったペアに回答していない場合があり、難易度が1.0 / 0.0 等の極端な値になってしまう。これらがoverfittingの原因になったりするので、そういった問題-ステップペアの難易度をスキルの難易度で置き換えたりしている)。

AkihikoWatanabe commented 3 years ago

ちなみにこの手のDKTこれまでのモデルと性能大して変わんないよ?系の主張は、当時だったらそうかもしれないが、2020年のRiiiDの結果みると、オリジナルなDKTがシンプルな構造すぎただけであって、SAKT+RNNみたいな構造だったら多分普通にoutperformする、と個人的には思っている。

AkihikoWatanabe commented 2 years ago

ASSISTmentsデータにはduplicate records問題以外にも、複数種類のスキルタグが付与された問題があったときに、1つのスキルタグごとに1レコードが列挙されるようなデータになっている点が、BKTと比較してDKTが有利だった点として指摘している。スキルA, Bが付与されている問題が2問あった時に、それらにそれぞれ正解・不正解した場合のASSISTments09-10データの構造は下図のようになる。DKTを使ってこのようなsequenceを学習した場合、スキルタグBの正誤予測には、一つ前のtime-stempのスキルタグAの正誤予測がそのまま利用できる、といった関係性を学習してしまう可能性が高い。BKTはスキルタグごとにモデルを構築するので、これではBKTと比較してDKTの方が不当に有利だよね、ということも指摘している。 image

複数タグが存在する場合の対処方法として、シンプルに複数タグを連結して新しいタグとする、ということを提案している。 image