Open AkihikoWatanabe opened 3 years ago
様々あるCFアルゴリズムをどのように選択すべきか、# of users, # of items, rating matrix densityの観点から分析した研究。
特にcomputationに関する制約がない場合は・・・、NMFはsparseなデータセットに対して最も良い性能を発揮する。BPMFはdenseなデータセットに対して最も良い性能を発揮する。そして、regularized SVD, PMFはこれ以外の状況で最も良い性能を示す(PMFはユーザ数が少ない場合によく機能する一方で、Regularized SVDはアイテム数が小さい場合に良く機能する。)。
もしtime constraintが5分の場合、Regularized SVD, NLPMF, NPCA, Rankbased CFは検討できない。この場合、NMFがスパースデータに対して最も良い性能を発揮し、BPMFがdenseで大規模なデータ、それ以外ではPMFが最も良い性能を示す。
もしtime constraintが1分の場合、PMFとBPMFは2に加えてさらに除外される。多くの場合Slope-oneが最も良い性能を示すが、データがsparseな場合はNMF。
リアルタイムな計算が必要な場合、user averageがbest
https://arxiv.org/pdf/1205.3193.pdf