Open AkihikoWatanabe opened 1 year ago
同じレビューに対しても、異なるユーザは異なるSumamryを生成するよね、というところがモチベーションとなり、Personalized Review Summarizationを提案。初めてPersonalizationの問題について提案した研究。
user embeddingによってユーザ情報を埋め込む方法と、user vocabulary memoryによって、ユーザが好むvocabularyを積極的にsummaryに利用できるようなモジュールの2種類をモデルに導入している
Trip advisorのレビューデータを収集。レビューのtitleをreference summaryとみなしてデータセット生成。ただタイトルを利用するだけだと、無意味なタイトルが多く含まれているでフィルタリングしている。
Trip Advisorはクローリングを禁止していた気がするので、割とアウトなのでは。 あと、各レビューをランダムにsplitしてtrain/dev/testを作成したと言っているが、本当にそれでいいの?user-stratifiedなsplitをした方が良いと思う。
PGN #135 やlead-1と比較した結果、ROUGEの観点で高い性能を達成
また人手評価として、ユーザのgold summaryに含まれるaspectと、generated summaryに含まれるaspectがどれだけ一致しているか、1000件のreviewとtest setからサンプリングして2人の学生にアノテーションしてもらった。結果的に提案手法が最もよかったが、アノテーションプロセスの具体性が薄すぎる。2人の学生のアノテーションのカッパ係数すら書かれていない。
case studyとしてあるユーザのレビュと生成例をのせている。userBの過去のレビューを見たら、room, locationに言及しているものが大半であり、このアスペクトをきちんと含められているよね、ということを主張している。
https://ojs.aaai.org/index.php/AAAI/article/view/4640