AkihikoWatanabe / paper_notes

たまに追加される論文メモ
https://AkihikoWatanabe.github.io/paper_notes
20 stars 0 forks source link

Sequence-to-Sequence Learning as Beam-Search Optimization, Wiseman+, EMNLP'16 #80

Open AkihikoWatanabe opened 6 years ago

AkihikoWatanabe commented 6 years ago

https://arxiv.org/pdf/1606.02960.pdf

AkihikoWatanabe commented 6 years ago

seq2seqを学習する際には、gold-history(これまで生成した単語がgoldなものと一緒)を使用し、次に続く単語の尤度を最大化するように学習するが、これには、

  1. Explosure Bias: test時ではtraining時と違いgold historyを使えないし、training時には過去に生成した単語に誤りがあるみたいな状況がない
  2. Loss-Evaluation Mismatch: training時は単語レベルのlossを使うが、だいたいはsentence-levelのmetrics (BLEUなど)を改善したい
  3. Label Bias: 各タイムステップでの単語の生起確率が局所的に正規化され、誤ったhistoryに続く単語がgoldな履歴に続く単語と同じ量(の確率?)を受け取ってしまう

これらを解決するために、targetの"sequence"に対してスコア(確率ではない)を与えるようなseq2seqモデルを提案し、訓練方法として、beam search optimization(training時のlossとしてbeam searchの結果得られるerrorを用いる)を提案。