AkihikoWatanabe / paper_notes

たまに追加される論文メモ
https://AkihikoWatanabe.github.io/paper_notes
18 stars 0 forks source link

QACE: Asking Questions to Evaluate an Image Caption, Lee+, EMNLP'21 #961

Open AkihikoWatanabe opened 1 year ago

AkihikoWatanabe commented 1 year ago

https://aclanthology.org/2021.findings-emnlp.395/

AkihikoWatanabe commented 1 year ago

In this paper we propose QACE, a new metric based on Question Answering for Caption Evaluation to evaluate image captioning based on Question Generation(QG) and Question Answering(QA) systems. QACE generates questions on the evaluated caption and check its content by asking the questions on either the reference caption or the source image. We first develop QACE_Ref that compares the answers of the evaluated caption to its reference, and report competitive results with the state-of-the-art metrics. To go further, we propose QACE_Img, that asks the questions directly on the image, instead of reference. A Visual-QA system is necessary for QACE_Img. Unfortunately, the standard VQA models are actually framed a classification among only few thousands categories. Instead, we propose Visual-T5, an abstractive VQA system. The resulting metric, QACE_Img is multi-modal, reference-less and explainable. Our experiments show that QACE_Img compares favorably w.r.t. other reference-less metrics.

Translation (by gpt-3.5-turbo)

AkihikoWatanabe commented 11 months ago

Image Captioningを評価するためのQGQAを提案している。candidateから生成した質問を元画像, およびReferenceを用いて回答させ、candidateに基づいた回答と回答の結果を比較することで評価を実施する。 image