AlexeyAB / darknet

YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )
http://pjreddie.com/darknet/
Other
21.77k stars 7.96k forks source link

Implement Yolo (CornerNet and/or Saccade) #3229

Open AlexeyAB opened 5 years ago

AlexeyAB commented 5 years ago

hec0kcpo0oi12


image


image

AlexeyAB commented 5 years ago

https://arxiv.org/pdf/1904.07850v2.pdf

AlexeyAB commented 4 years ago

Added model: https://github.com/AlexeyAB/darknet/files/4007007/tiny_v3_pan3_CenterNet_Gaus_ae_mosaic_scale_iouthresh_mosaic.txt

Which generates bboxes from three points of the object (top-left Corner, right-bottom Corner, Center), and then merges them using the NMS.

That should be trained by using command ./darknet detector train data/self_driving.data tiny_v3_pan3_CenterNet_Gaus_ae_mosaic_scale_iouthresh_mosaic.cfg yolov3-tiny.conv.14 -map

Whole comparison: https://github.com/AlexeyAB/darknet/issues/3114#issuecomment-494148968


Model (cfg & weights) network size = 544x544 Training chart Validation video BFlops Inference time RTX2070, ms mAP, %
yolo_v3_tiny_pan3.cfg.txt and weights-file Features: PAN3, AntiAliasing, Assisted Excitation, scale_x_y, Mixup, GIoU chart video 14 8.5 ms 67.3%
yolo_v3_tiny_pan5 matrix_gaussian_GIoU aa_ae_mixup_new.cfg.txt and weights-file Features: MatrixNet, Gaussian-yolo + GIoU, PAN5, IoU_thresh, Deformation-block, Assisted Excitation, scale_x_y, Mixup, 512x512, use -thresh 0.6 chart video 30 31 ms 64.6%
yolo_v3_spp_pan_scale.cfg.txt and weights-file chart video 137 33.8 ms 60.4%
tiny_v3_pan3_CenterNet_Gaus ae_mosaic_scale_iouthresh mosaic.txt and weights-file chart video 25 14.5 ms 57.9%
yolov3-tiny_3l.cfg.txt (common old model) and weights-file chart video 12 5.6 ms 46.8%
yolo_v3_tiny.cfg.txt (common old model) and weights-file chart video 9 5.0 ms 32.3%
- -
- -