Open kenpyc opened 5 years ago
@kenpyc Hi,
Try to use higher width= height= in yolov3-tiny.cfg-file.
Or use yolov3-spp.cfg file (Full model) instead of Tiny.
Or use this cfg-file https://github.com/AlexeyAB/darknet/files/3199622/yolo_v3_tiny_pan.cfg.txt but it works only with this repository.
Hi can i ask whats the differnece between the tiny yolo and the yolov3-spp.cfg
yolov3-spp.cfg is 5x-10x slower and much more accurate.
yolov3-spp.cfg accuracy mAP@0.5=60.5%
yolov3-tiny.cfg accuracy mAP@0.5=33.1%
thank you i will give it a try and update
Hi i am trying to train 3 classes now and i have changed the filters to 24 however when i launch launch the object detection everywhere is a crack and circle do you have any suggestion?
[net]
batch=64 subdivisions=8 width=544 height=544 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1
learning_rate=0.001 burn_in=1000 max_batches = 10000
policy=sgdr sgdr_cycle=1000 sgdr_mult=2 steps=4000,6000,8000,9000
[convolutional] batch_normalize=1 filters=16 size=3 stride=1 pad=1 activation=leaky
[maxpool] size=2 stride=2
[convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky
[maxpool] size=2 stride=2
[convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky
[maxpool] size=2 stride=2
[convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky
[maxpool] size=2 stride=2
[convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky
[maxpool] size=2 stride=2
[convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky
[maxpool] size=2 stride=1
[convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky
###########
[convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky
[convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky
########### to [yolo-3]
[convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky
[upsample] stride=2
[route] layers = -1, 8
###########
[convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky
[convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky
########### to [yolo-2]
[convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky
[upsample] stride=2
[route] layers = -1, 6
[convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky
[convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky
########### features of different layers
[route] layers=1
[reorg3d] stride=2
[route] layers=3,-1
[reorg3d] stride=2
[route] layers=5,-1
[reorg3d] stride=2
[route] layers=7,-1
[reorg3d] stride=2
[route] layers=9,-1
########### [yolo-1]
[convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky
[upsample] stride=4
[route] layers = -1,24
[convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky
[convolutional] size=1 stride=1 pad=1 filters=24 activation=linear
[yolo] mask = 0,1,2 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=3 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=0
########### [yolo-2]
[route] layers = -7
[convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky
[upsample] stride=2
[route] layers = -1,19
[convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky
[convolutional] size=1 stride=1 pad=1 filters=24 activation=linear
[yolo] mask = 3,4,5 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=3 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=0
########### [yolo-3]
[route] layers = -14
[convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky
[route] layers = -1,14
[convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky
[convolutional] size=1 stride=1 pad=1 filters=24 activation=linear
[yolo] mask = 6,7,8 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=3 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=0
Hi as I am using yyolov3-tiny to do crack detection, however, results are not very accurate can you enlighten me on how I should increase accuracy with yolov3-tiny