Open yeyewen opened 5 years ago
Can you attach your cfg file?
Yes, YOLOv3tiny-pan2 is what you posted. `[net] batch=64 subdivisions=4 width=800 height=480 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1
learning_rate=0.001 burn_in=1000 max_batches = 30000
policy=sgdr sgdr_cycle=1000 sgdr_mult=2 steps=20000, 26000 scales=0.1,0.1
[convolutional] batch_normalize=1 filters=16 size=3 stride=1 pad=1 activation=leaky
[maxpool] size=2 stride=2
[convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky
[maxpool] size=2 stride=2
[convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky
[maxpool] size=2 stride=2
[convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky
[maxpool] size=2 stride=2
[convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky
[maxpool] size=2 stride=2
[convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky
[maxpool] size=2 stride=1
[convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky
############ SPP [maxpool] stride=1 size=5
[route] layers=-2
[maxpool] stride=1 size=9
[route] layers=-4
[maxpool] stride=1 size=13
[route] layers=-1,-3,-5,-6 ########## End SPP
###########
[convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky
[convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky
########### to [yolo-3]
[convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky
[upsample] stride=2
[route] layers = -1, 8
###########
[convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky
[convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky
########### to [yolo-2]
[convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky
[upsample] stride=2
[route] layers = -1, 6
[convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky
[convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky
########### features of different layers
[route] layers=1
[maxpool] size=16 stride=16
[convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky
[route] layers=3
[maxpool] size=8 stride=8
[convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky
[route] layers=5
[maxpool] size=4 stride=4
[convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky
[route] layers=7
[maxpool] size=2 stride=2
[convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky
[route] layers=9
[convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky
[route] layers=-1, -3, -6, -9, -12, 18
[maxpool] maxpool_depth=1 out_channels=64 stride=1 size=1
########### [yolo-1]
[upsample] stride=4
[route] layers = -1,30
[convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky
[convolutional] size=1 stride=1 pad=1 filters=45 activation=linear
[yolo] mask = 0,1,2 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=10 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=0
########### [yolo-2]
[route] layers = -6
[upsample] stride=2
[route] layers = -1,26
[convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky
[convolutional] size=1 stride=1 pad=1 filters=45 activation=linear
[yolo] mask = 3,4,5 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=10 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=0
########### [yolo-3]
[route] layers = -12
[route] layers = -1,20
[convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky
[convolutional] size=1 stride=1 pad=1 filters=45 activation=linear
[yolo] mask = 6,7,8 anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 classes=10 num=9 jitter=.3 ignore_thresh = .7 truth_thresh = 1 random=0`
Try to change
policy=sgdr
sgdr_cycle=1000
sgdr_mult=2
steps=20000, 26000
scales=0.1,0.1
to
policy=steps
steps=20000, 26000
scales=0.1,0.1
Thanks a lot.I tried,but it seems not helpful. I also found that when iteration > 15000 ,it won't happen. I still don't know why。
@AlexeyAB Hi,I trained YOLOv3tiny-pan2.cfg。The loss got a sudden increase just like the following chart For some reason,I add the spp to YOLOv3tiny-pan2. and I trained, this situation has also happened. But when I train other networks,like yolo_v3_tiny_3l,yolo_v3_tiny.The loss are normal.
So do you know what might be the cause ? It will be very helpful for me. Thank you.