Open samux87 opened 4 years ago
mini_batch=batch/subdivisions
mmmmh... in my case I have: batch: 64 subdivisions: 64
so, mini-batch: 1
Is This meaning that for each iteration is used just 1 image?
if yes, why I have "out of memory" error if I increase the input image size over 1504? (I used p3.2xlarge)
Dimensione istanza | GPU – Tesla V100 | Peer to peer GPU | Memoria GPU (GB) | vCPU | Memoria (GB) | Larghezza di banda di rete | Larghezza di banda EBS | Prezzo on demand/h* | Istanza riservata effettiva di 1 anno all'ora* | Istanza riservata effettiva di 3 anno all'ora* |
---|---|---|---|---|---|---|---|---|---|---|
p3.2xlarge | 1 | N/D | 16 | 8 | 61 | Fino a 10 Gb/s | 1,5 Gbps | 3,06 USD | 1,99 USD | 1,05 USD |
Is This meaning that for each iteration is used just 1 image?
64 images per iteration
mini_batch=1 batch=64
forward-backward for 1 image weights update for 64 images
Hi guys, I have calculated the memory just for the image blob during the forward pass like this:
So, in the end, I got ~2GB per Image. batch number = 64
64 * 2 = 128 GB (just for forwarding; we should add parameters memory, backward memory, etc...)
This doesn't make sense to me because the GPU memory that I used was near 16 GB; Do you have any idea why the math doesn't match the reality?
Thank you, Sam.