Open mnbv7581 opened 4 years ago
it seems group convolution is not efficient in modern GPU, i suggest you to use CSPDarknet53-PANet-SPP instead of CSPResNeXt50-PANet-SPP in this case.
#
Detector FPS on GeForce RTX 2070 (Tensor Cores):
FPS
- measured using the command: ./darknet detector demo cfg/coco.data ... -benchmark
CUDNN_HALF=1
(Mixed-precision is forced for Tensor Cores (if groups==1))
512x512:
yolov3-spp
- 52.0 FPS - (--ms )
csresnext50-panet-spp
- 36.5 FPS - (--ms )
608x608:
yolov3-spp
- 38.0 FPS - (--ms )
csresnext50-panet-spp
- 33.9 FPS (--ms )
CUDNN_HALF=0
512x512:
yolov3-spp
- 41.4 FPS - (--ms)
csresnext50-panet-spp
- 34.5 FPS - (--ms)
608x608:
yolov3-spp
- 26.1 FPS - (--ms)
csresnext50-panet-spp
- 30.0 FPS (--ms)
We combined our custom dataset with the COCO dataset to learn. Target models used the two versions of [csresnext50-spp-original-optimal] and [yolo-spp] and unified the scale to 608x608. The problem here is that [csresnext50-spanet-spp-original-optimal] models show faster and more accurate performance than [yolo-spp] models, but the mAP shows better performance, but the speed is rather slow and confusing. Is there a possibility that I didn't learn well?